Graphs without Odd Holes, Parachutes or Proper Wheels:
A Generalization of Meyniel Graphs
and of Line Graphs of Bipartite Graphs

Michele Conforti *
Gérard Cornuéjols '

November 1999, revised May 2001 and September 2002

Abstract

We prove that the strong perfect graph conjecture holds for graphs that do not contain
parachutes or proper wheels. This is done by showing the following theorem:

If a graph G contains no odd hole, no parachute and no proper wheel, then G is
bipartite or the line graph of a bipartite graph or G contains a star cutset or an extended
strong 2-join or G is disconnected.

To prove this theorem, we prove two decomposition theorems which are interesting
in their own rights. The first is a generalization of the Burlet-Fonlupt decomposition
of Meyniel graphs by clique cutsets and amalgams. The second is a precursor of the
recent decomposition theorem of Chudnovsky, Robertson, Seymour and Thomas for Berge
graphs that contain a line graph of a bipartite subdivision of a 3-connected graph.
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1 Introduction

A graph is perfect if, in all its induced subgraphs, the size of a largest clique is equal to the
chromatic number. A hole is a chordless cycle of length at least four. A hole is odd (even) if it
contains an odd (even) number of nodes. A long standing conjecture of Berge [1] states that
a graph G is perfect if and only if neither G nor its complement contains an odd hole. (The
complement G of G has node set V(G) and two nodes are adjacent in G if and only if they
are not adjacent in G). Berge’s conjecture is known as the Strong Perfect Graph Conjecture.
It was proved recently by Chudnovsky, Robertson, Seymour and Thomas [3]. This conjecture
was already known to hold for several special classes of perfect graphs.
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For example, Meyniel [13] showed that if every odd cycle of G is a triangle or contains at
least two chords, then G is perfect. These graphs are known as Meyniel graphs.

Another well-known example is the following. A graph G is the line graph of a graph H if
V(G) = E(H) and v;,vj € V(G) are adjacent if e;,e; € E(H) have a common endnode. If G
is the line graph of a bipartite graph H, then G is perfect. (Indeed, the maximum degree of
a node in H is equal to the chromatic index of H and this implies that the chromatic number
of G equals the size of its largest clique).

In this paper we introduce WP-free graphs (W stands for proper Wheel and P stands for
Parachute: They will be defined later) and characterize the WP-free graphs that are perfect.
Meyniel graphs and line graphs of bipartite graphs are perfect WP-free graphs.

WP-free graphs do not contain the complement of a hole H, |H| > 7. We show that
if a WP-free graph contains no odd hole, then it is perfect. This is acheived by proving a
structural theorem for even-signable WP-free graphs, a class of graphs that is larger than
the class of WP-free graphs containing no odd hole. The proof of this theorem follows from
two independent decomposition theorems, each interesting in its own right. The first is a
generalization of the Burlet-Fonlupt decomposition of Meyniel graphs by clique cutsets and
amalgams [2]. The second is a precursor of the recent decomposition theorem of Chudnovsky,
Robertson, Seymour and Thomas [3] for Berge graphs that contain a line graph of a bipartite
subdivision of a 3-connected graph.

1.1 Wheels, Parachutes and WP-Free Graphs.

A wheel (H,v) consists of a hole H together with a node v, called the center, that has at
least three neighbors in H. If v has exactly k neighbors in H, the wheel is called a k-wheel.

Definition 1.1 A T-wheel (or twin wheel) is a 3-wheel (H,v) such that the three neighbors
of v in H are consecutive.

A wheel (H,v) is a A-free wheel (or triangle-free wheel) if the neighbors of v in H induce
a stable set. That is, the graph induced by (H,v) is a triangle-free graph.

A wheel (H,v) is a universal wheel if v is adjacent to every node of H.

A wheel (H,v) is an L-wheel (or line wheel) if (H,v) is the line graph of a cycle C with
a unique chord and V(C) induces a triangle-free graph, i.e. the unique chord of C is not a
triangular chord. So v has neighbors a1, as, by and by in H, H = a1, P1,b1,bs, Pa,a9,a1 and
Py, P, are paths of length greater than 1.

A wheel that is in none of the above four classes is called a proper wheel.

Definition 1.2 An L-parachute LP(a1b1,asbs, as, z) is a graph induced by an L-wheel (H, a3)
where H = a1,b1,...,2,...,b2,a9,...,a1, where a1, as, by, by are the neighbors of ag in H,
together with a chordless path P = as, ...,z of length greater than 1. No node of H \ {z,b1}
may be adjacent to an intermediate node of P.

A T-parachute T'P(ay,a2,b1,be,2) is a graph induced by a T-wheel (H,a2) where H =
bi,a1,b9,...,2,...,b1, where by, a1, by are the neighbors of as in H, together with a chordless
path P = ag, ...,z of length greater than 1. No node of H \ {z,b1} may be adjacent to an
intermediate node of P.

A parachute s either an L-parachute or a T-parachute.



For an L-parachute or a T-parachute, let P, P» be respectively the b;z-path and the
byz-path in H \ a; and Cp, Cy be the cycles induced by P U P} and P U P,. Note that in a
T-parachute or an L-parachute, the paths P, and P may have length one.

In the definition below and throughout the rest of the paper, G contains G’ if G’ is an
induced subgraph of G and G is G'-free if G does not contain G’.

Definition 1.3 A graph is WP-free if it contains neither a proper wheel nor a parachute.

Lemma 1.4 Let G be an L-parachute LP(a1b1,a9bs,as, z) with the property that no proper
subgraph of G is a parachute or a proper wheel. Then G is of one of the following types, see
Figure 1.

type a) No intermediate node of P is adjacent to by or bs.

type b) An intermediate node of P is adjacent to by, (Co,by) is a A-free wheel and by is adjacent
to z.

type ¢) An intermediate node of P is adjacent to by, (Ca,b1) is a T-wheel and by is adjacent to
2.

type d) An intermediate node of P is adjacent to by, (Ca,b1) is an L-wheel and by is adjacent
to z.

Proof: If no intermediate node of P is adjacent to by or by, G is of type a). Suppose an
intermediate node of P is adjacent to by, and b; is not adjacent to z. If the neighbor of ag in
P is the only intermediate node of P that is adjacent to b1, there is a smaller proper wheel
with center as. Otherwise there is a smaller L-parachute. So b; must be adjacent to z and
therefore (Co,b;) is a wheel, which is not proper by assumption and is not universal since b;
and by are nonadjacent. So (Coq,b;) is either a A-free wheel or a T-wheel or an L-wheel and
we have types b) or ¢) or d) in these three cases. O

Lemma 1.5 Let G be a T-parachute TP(ay,as,b1,ba, z) that is not an L-parachute and such
that no proper subgraph of G is a parachute or a proper wheel. Then G is one of the following
graphs, see Figure 2.

type a) No intermediate node of P is adjacent to by or by.

type b) An intermediate node of P is adjacent to by, (Co,by1) is a A-free wheel and by is adjacent
to z.

type ¢) An intermediate node of P is adjacent to by, (Ca,b1) is a T-wheel and by is adjacent to
z.

Proof: If no intermediate node of P is adjacent to b; or by we have type a). Assume an
intermediate node of P is adjacent to b;. Since no proper induced subgraph of G is a
parachute or a proper wheel, then b; is adjacent to z and therefore (Co, b1) is a wheel, which
is not proper by assumption and is not universal since b; and by are nonadjacent. If (Co,by)
is an L-wheel then G is also an L-parachute of type c¢. So (Cy,b;) is either a A-free wheel or
a T-wheel, and we have types b) or c). O



Figure 1: L-parachutes

Figure 2: T-parachutes



A cap is a cycle C of length at least 5 with a unique chord that is a triangular chord of
C. A cap is odd if C is odd.

Remark 1.6 A graph G is Meyniel if and only if G contains no odd hole and no odd cap.

Proof: G is not a Meyniel graph if and only if G contains an odd cycle that is not a triangle
and has at most one chord. Let C be a smallest such cycle. C is either an odd hole or an
odd cap. O

If G contains a cap, G contains an odd hole or an odd cap. So the class of cap-free graphs
contains the class of Meyniel graphs. The structure of cap-free graphs is very similar to the
structure of Meyniel graphs and was studied in [7]. Since every proper wheel and parachute
contains a cap, the class of WP-free graphs contains the class of cap-free graphs.

A diamond is a cycle of length 4 with a unique chord. A claw is a graph on 4 nodes, one of
them with degree 3 and the others with degree 1. The following characterization of the line
graphs of bipartite graphs is due to Harary and Holtzmann [11]. It can be proven following
the arguments of the proof of Remark 3.2.

Remark 1.7 G is the line graph of a bipartite graph if and only if G contains no odd hole,
no claw and no diamond.

It is straightforward to check that if G is a proper wheel or a parachute, then G contains
a claw or a diamond. This implies the following remark:

Remark 1.8 The class of WP-free graphs containing no odd hole includes the class of
Meyniel graphs and the class of line graphs of bipartite graphs.

1.2 Even-Signable Graphs

We study even-signable WP-free graphs, a class of graphs that includes WP-free graphs
containing no odd hole.

A graph G is signed if its edges are given odd or even labels. A subset of E(G) is odd
(resp. even) if it contains an odd (resp. even) number of edges labeled odd. A graph G is
even-signable if there exists a signing of its edges such that every triangle is odd and every
hole is even. These graphs were introduced in [6]. More results can be found in [7]. Note
that, if G contains no odd hole, then G is even-signable since all its edges can be labeled odd.
Also, if G is triangle-free, then G is even-signable since all its edges can be labeled even. It
is shown in [7] that, if one can efficiently test whether G is even-signable, then one can also
efficiently test whether GG contains an odd hole.

The graphs in Figure 3 are relevant in this paper. Solid lines represent edges and dotted
lines represent paths of length at least one. The first three graphs are referred to as 3-path
configurations (3PC’s). The first graph is called a 3PC(x,y) (or 3PC(-,-)), where node x
and node y are connected by three paths P, P» and P3. The second is called a 3PC(zyz,u)
(or 3PC(A,-)), where xyz is a triangle and P, P» and P are three paths with endnodes
x, y and z respectively and a common endnode u. The third is called a 3PC(xyz, vvw) (or
3PC(A,A)), consists of two node disjoint triangles zyz and wvw and paths P, P, and Ps
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Figure 3: 3-path configurations and wheel

with endnodes x and u, y and v and z and w respectively. In all three cases, the nodes of
P; U Pj induce a hole for i # j. This implies that all paths of a 3PC(-,-) have length greater
than one, and at most one path of a 3PC(A,-) has length one.

A wheel (H,v) is an odd wheel if it contains an odd number of triangles: Since H is a
hole, every triangle of (H,v) contains v and two adjacent nodes of H. So a wheel (H,v) is
odd if the subgraph of H, induced by the neighbors of v, contains an odd number of edges.

A consequence of a theorem of Truemper [14] is the following co-NP characterization of
even-signable graphs.

Theorem 1.9 A graph is even-signable if and only if it contains no 3PC(A,-) and no odd
wheel.

A derivation of this result and a discussion of Truemper’s theorem can be found in [7]
and [8]. We find it convenient to work with even-signable graphs because the graphs of
Theorem 1.9 are easy to spot when proving results.

1.3 The Main Theorem

In a graph G, a node set S is a cutset if the graph G \ S is disconnected. A node set S is
a star if it consists of a node z and neighbors of x. Chvétal [4] showed that a minimally
imperfect graph cannot contain a star cutset.

A graph G has an extended 2-join if V(G) can be partitioned into subsets V4, Vg and U
(U possibly empty), such that Ay, Ay € Va4, By, By € Vg are nonempty disjoint sets with the
following properties: (i) every node of A; is adjacent to every node of By, every node of A
is adjacent to every node of By and these are the only adjacencies between V4 and Vg, (ii)
every node of U is adjacent to A; U Ay U By U By and possibly to other nodes in V(G), (iii)
the connected components of G(V4) meet both A; and A and, if |A;| = |A2| = 1 then V4
does not induce a chordless path and, (iv) the connected components of G(Vg) meet both
By and By and, if |By| = |Bs| = 1 then Vg does not induce a chordless path.

An extended 2-join is called extended stromg 2-join when, in addition, both A; U B,
Ao U By induce cliques. When U = (), the extended 2-join reduces to the 2-join introduced
by Cornuéjols and Cunningham [9].



In this paper, we prove the following result.

Theorem 1.10 Let G be an even-signable WP-free graph that is not a triangle-free graph
nor the line graph of a triangle-free graph. Then G contains a star cutset or an extended
strong 2-join or G is disconnected.

Corollary 1.11 Let G be a WP-free graph that contains no odd hole. Then G is a bipartite
graph or the line graph of a bipartite graph or G contains a star cutset or an extended strong
2-join or G is disconnected.

This result, together with the next two theorems, implies that the Strong Perfect Graph
Conjecture holds for WP-free graphs.

Theorem 1.12 [4] A minimally imperfect graph cannot contain a star cutset.

The following theorem follows from a result of Conforti, Cornuéjols, Gasparyan and
Vuskovi¢ [5] on universal 2-amalgams.

Theorem 1.13 [5] A minimally imperfect graph cannot contain an extended strong 2-join.
Theorem 1.14 A WP-free graph is perfect if and only if it contains no odd hole.

Proof: The “if” part is obvious. We prove the “only if” statement. Let G be a minimally im-
perfect WP-free graph that contains no odd hole. Then G is even-signable. By Theorem 1.12,
G does not contain a star cutset and by Theorem 1.13, G does not contain an extended strong
2-join. Furthermore, G is connected. Hence, by Corollary 1.11, G is a bipartite graph or the
line graph of a bipartite graph. In both cases G is perfect, a contradiction. O

1.4 Proof Outline of the Main Theorem

A graph G has an amalgam if V(G) can be partitioned into subsets V4, Vg and U (U possibly
empty), such that A; € V4, By € Vg are nonempty sets with the following properties: (i)
every node of A; is adjacent to every node of B; and these are the only adjacencies between
V4 and Vp, (ii) U is a clique and every node of U is adjacent to A; U By and possibly to
other nodes in V(G), (iii) |[V4| > 2 and |Vp| > 2.

The notion of amalgam was introduced by Burlet and Fonlupt [2]. The join introduced
by Cunningham and Edmonds [10] is an amalgam with U = .

A node u is universal for a graph H if u is adjacent to all the nodes in H.

Theorem 1.10 is in fact the consequence of the following stronger results.

Theorem 1.15 Let G be an even-signable WP-free graph that does not contain an L-wheel
nor a 3PC(A,A). Then either G is a triangle-free graph plus at most one universal node or
G contains a clique cutset or an amalgam.

This theorem is proved in Section 2.

Theorem 1.16 Let G be an even-signable WP-free graph that contains an L-wheel or a
3PC(A,A). Then either G is the line graph of a triangle-free graph or G contains a star
cutset or an extended strong 2-join or G is disconnected.

This theorem is proved in Section 3.



2 GM-graphs

Definition 2.1 A graph G is a GM-graph (Generalized Meyniel graph) if G is an even-
signable WP-free graph and G does not contain an L-wheel or a 3PC(A,A).

In this section we prove Theorem 1.15 which states that every GM-graph G is a triangle-
free graph plus at most one universal node or G contains a clique cutset or an amalgam. This
theorem is interesting in its own right. Indeed, when specialized to Meyniel graphs, this result
is a famous theorem of Burlet and Fonlupt [2]: every Meyniel graph G is a bipartite graph
plus at most one universal node or G contains a clique cutset or an amalgam. In addition,
Theorem 1.15 has algorithmic consequences that we do not develop in this paper.

We first introduce some definitions.

For S C V(G), we let G(S) be the subgraph of G induced by the nodes in S. We let
N(S) denote the set of nodes with at least one neighbor in S. Two nodes u, v are twins with
respect to S if u and v are adjacent and N(u) N (S\ {u,v}) = N(v) N (S\ {w,v}). If wand v
are twins with respect to V(G), we simply say that v and v are twins.

We denote a cap by (H,z) where H is a hole and = is a node adjacent to consecutive
node a, b in H. The nodes a, b are called the attachments of the cap.

Given three disjoint node sets A, B and C' such that no node of A is adjacent to a node
of B, a direct connection between A and B is a minimal path P (in terms of its node set)
between a node in A and a node in B. The direct connection P avoids the set C' if no node
of Pisin C.

We will need the following technical lemma about caps in GM-graphs.

Lemma 2.2 Let G be a GM-graph that contains no clique cutset but contains a cap (H,x)
with attachments a, b. Then G has the following properties:

(i) In every direct connection P = x1,...,xy from x to V(H)\{a,b} in G\ (V(H)U{z}),
node Ty is a universal node for H or is a twin of a or b with respect to H.

(ii) Let U be the set of universal nodes for H that are endnodes of some such direct connec-
tion and let T be the set of twins of a or b that are endnodes of some direct connection.
Then T is a clique, every node of U is adjacent to every node of T and U contains two
nonadjacent nodes u and u’.

(i4i) There exists a node x' adjacent to uw and v’ such that (H,x") is a cap with attachments
a and b.

Proof: Suppose that (i) does not hold. Among all caps (Q,y) with attachments {a,b} and
direct connection P = z1,...,2, from y to V(Q) \ {a,b} in G\ (V(Q) U {y}), such that z,
is neither a universal node for @) nor a twin of a or b with respect to @, choose (Q,y) and
P such that P is shortest possible. It follows from this choice of (Q,y) and P that no node
xj with j < n — 1 is adjacent to both a and b. Also, at least one of the nodes a, b is not
adjacent to any of the nodes x; for 2 < j < n —1 (otherwise ) can be modified, P shortened
and (i) still does not hold). Assume w.l.o.g. that b is not adjacent to any of the nodes z; for
2 < j <n—1. By construction, z, has at least one neighbor z in V(Q) \ {a, b}.



Assume first that z,, has one or two neighbors in (). We only sketch the proof since
checking the various cases is routine. If n = 1, there is a 3PC(A,-) or an odd wheel or a T-
parachute or a 3PC (A, A). Son > 2. Since G does not contains an L-wheel or a 3PC(A, A)
or a 3PC(4,), it follows that a is adjacent to some node x; for j < n —1 or b is adjacent to
x1. Let S be the hole containing V(P) U {b} and possibly nodes of (V(Q)\ {a})U{y}. Since
(S,a) is neither a proper wheel nor an L-wheel, either a or b is adjacent to x;. But now,
there is a T-parachute or a 3PC(A,-) or a proper wheel or a 3PC(A, A), a contradiction.

So x, has at least three neighbors in (). Assume that x, is adjacent to at most one of
the nodes a, b, and let S denote the hole with nodes in V(Q) U {z,} that contains a, b and
Zn. If m > 2, we have a contradiction to the choice of (Q,y) and P. If n = 1, we have a
T-parachute if x; is adjacent to a or b and a proper wheel otherwise. So x, is adjacent to
both a and b and at least one other node of Q). Since (@, x,,) is not a proper wheel nor a line
wheel, x,, must be universal for () or a twin of a or b with respect to ). This completes the
proof of (i).

Suppose that (ii) does not hold. Let z,, and z}, be the last nodes of direct connections
P and P’ where z,, € T and ], € TUU are not adjacent. Assume w.l.o.g. that z,, is a twin
of b with respect to H. If 2}, is a twin of a, then V(H) U {z,,, z},} induces a T-parachute, a
contradiction. So we can assume w.l.o.g. that both z,, and 2], are adjacent to a, b and the
neighbor ' of b in V(H) \ {a}.

If P and P’ have no common node nor adjacent nodes, let C' denote the hole induced
by V(P)UV(P")U{t,z}. Now (C,b) is a proper wheel unless C is of length four, i.e. z is
adjacent to x,, and z],,. But then there is a T-parachute induced by (V (H)\{b})U{z, zp, z,,}.

So P and P’ have a common node or adjacent nodes. Let @ be a shortest path from x,,
to a, in P U P’. There is a T- parachute with top node ¥, side nodes z,, and z,, and side
paths contained in Q.

So x,, and z], are adjacent. This shows that T is a clique and every node of T' is adjacent
to every node of U. Since U UT is not a clique cutset separating  from V(H) \ {a, b}, there
must exist two nodes in U that are nonadjacent, say u and u'. This completes the proof of
(ii).

Now we prove (iii). Let P and P’ be direct connections from x to V(H) \ {a,b} in
G\ (V(H)U{z}) that end in u and u’ respectively.

If P and P’ have no common node nor adjacent nodes, let C' denote the hole induced by
V(P)UV(P')U{¥,z}, where b/ is the neighbor of b in V(H) \ {a}. Since (C,b) is not a
proper wheel, b must be adjacent to every node of P and P’. By symmetry, a is adjacent to
every node of P and P’. Since (C,a) is not a proper wheel, it follows that C' has length four.
So (iii) holds in this case.

Now assume that P and P’ have a common node or adjacent nodes. Let () be a shortest
path from u to «’ in P U P’, let C be the hole induced by V(Q) U {u, v ,b'} and C’ the hole
induced by V(Q) U {u,u',a’} where @’ is the neighbor of a in V(H) \ {b}. If Q contains an
intermediate node adjacent to b, then @ has length two, otherwise (C,b) or (C’,b) is a proper
wheel. By symmetry, the same holds for a. Furthermore, when () has length two, the claim
holds if its intermediate node is adjacent to both a and b. So, whether ) has length two or
not, we can assume w.l.o.g. that b is not adjacent to any intermediate node of Q). Let M be a
shortest path from b to @ in V(P)UV(P')U{z}. Let m be the node of M adjacent to Q. By



the choice of (), m has at most three neighbors in Q. If m has two adjacent neighbors ¢1, g2
in @, there is a 3PC'(mq1q2,b). So we can assume w.l.o.g. that m has only one neighbor z
in @ since, otherwise we can modify ) to get the desired property. Now there is a parachute
with side nodes v and «’, side paths @, and Q,,, top node ¥/, center node b and middle
path M. This completes the proof of (iii). O

2.1 D-structures

Definition 2.3 A D-structure (C1,Cy, K) of G consists of disjoint sets of nodes C1,Cy and
K, where |C1| > 2, |C2| > 2 and the nodes of K induce a clique of G (possibly K is empty).
Furthermore, the subgraph G(C1) is connected and every node in C is universal for Co U K,
every node in Cy is unwersal for C1 U K and there ezists no node in V(G) \ (C1 UCy U K)
adjacent to a node in C1 and a node in Cs.

This notion was introduced in [7], where it was shown that, if a cap-free graph G contains
a D-structure, then G contains an amalgam. Here, we show the following result.

Theorem 2.4 If G is a GM-graph that contains a D-structure, then G contains a clique
cutset or an amalgam.

Proof: Let U be the set of nodes in V(G) \ (C; U Cy U K) that are adjacent to C; and are
connected to a node in Cy by a path with nodes in V(G) \ (C; U K).

Claim 1: If G contains no clique cutset, every node in U is universal for C.

Proof: Assume not and choose u € U contradicting the claim and ¢, € Cy connected
by a shortest possible path with nodes in V(G) \ (C; U K) and among all these paths, let
P =xy=wu,2q,...,2,,7,,1 = ¢y be one with the largest number of nodes adjacent to C.
Since C7 and Cy belong to a D-structure, then n > 1. By our choice, intermediate nodes of
P are either nonadjacent to C) or universal for C';. Since u is adjacent but not universal to
C, and G(C,) is connected, C; contains adjacent nodes a, b such that u is adjacent to a but
not to b.

We now show that G(V(P) U {a,b}) contains a cap (H,z) where H = a,z;, P, SRR

Assume that P contains consecutive nodes that are both adjacent to a and let z,, z, be such

nodes with highest index. Then ¢ < n by the definition of D-structure, so P, T contains a

node adjacent to a. Let z; be such a node, of lowest index and let H = a,z;,, P, CANERE N
Now (H,z;) is a cap. If P does not contain consecutive nodes that are both adjacent to a,
let z; be the node of lowest index i > 1 adjacent to a (and b) and let H = a, ¢, P, , ,
Now (H,b) is a cap.

Let (H,x) be a cap where H = a,z;, P,

l’l”

T, Q.

zja and j > i+ 2. Since G contains no clique

cutset, by Lemma 2.2, G contains nonadJacent nodes 2z, 2/, universal for H (possibly adjacent
to x) and, since K is a clique, at least one of these nodes, say z, is not in K. Now z ¢ (',
since otherwise x;_, is adjacent to z € C; but not a € C; and so, if j =n + 1, the definition
of D-structure is contradicted, and if j < n, the choice of u is contradicted. Furthermore
z ¢ C,, since otherwise z; is adjacent to a € C} and z € Cy, a contradiction to the definition
of D-structure.
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Soze V(G)\ (C,UCyUK). Now j =i+2 and z is universal for C1, else the minimality
of P is contradicted. Let P’ be obtained from P by removing z,, ; and adding z. Now P and
P’ have the same length and P’ contradicts our assumption that P has the largest number
of neighbors in €. So this completes the proof of Claim 1.

Let K’ contain the nodes in K that are not universal for U and K” = K \ K'. Define
A=C1, B=CyUK UU. We show that, if G contains no clique cutset, (4, B, K") is an
amalgam of G. Claim 1 shows that every node in B is universal for A and by definition of
K", every node in K” is universal for U. Since (C1,Cs, K) is a D-structure, every node in
K" is universal for C; UCy U K.

Claim 2: Let G’ be the graph obtained from G by removing all edges with one endnode
in A and the other in K'. If G contains no clique cutset, in G'(V(G) \ (Co U K" UU)) no
path connects a node of K' and a node of C; = A.

Proof: Let P = x,vy,...,up,k be a shortest path connecting x € C; and k € K’ and
contradicting the claim. No intermediate node of P is adjacent to a node in U5 else, by the
definition of U, v1 belongs to U. If p > 2, let ¢y be any node in Cy and H =k, z,v,...,vp, k.
Then (H,cy) is a cap and since G contains no clique cutset, by Lemma 2.2, G contains two
nonadjacent nodes universal for H and one of them, say z, is not in K. Since v; is adjacent
tox € C) and z, z is not in Cy. 2 € O, else v,, is adjacent to z € C} and k and P’ = z,v,, k
contradicts the minimality of P. Now since v; € U and v; is adjacent to z, z is also not in
U.SozeV(G)\(C,UC,UKUU) and P' = z, z, k again contradicts the minimality of P.

So P = z,v1, k. Since k is not universal for U, U contains a node not adjacent to k. Let u
be such a node, connected in G'\ (C1 U K) to a node of Cy, say ¢y, by a shortest possible path
and among these paths, let Q = z1 = u,...,z,, = ¢y have the largest number of neighbors
of C]. Note that ) may contain several nodes that are universal for C, so let uy,...,u, be
such nodes of @, with u; closer to w than w;y; (u1 = 2, = v and u, = x,, = ¢y). Note that
all nodes uy,...,u,—1 belong to U.

We now show that no two consecutive nodes of () are universal for C,. For, let u;_1, u,
be consecutive nodes of highest index. Note that ¢ < n — 1 by the definition of D-structure.
So let H = z,u;, QuiuiH,ui +1,%, and (H,u;_;) is a cap and again since G’ contains no clique
cutset, by Lemma 2.2, there exists a node z not in K universal for H. Since u; is adjacent to
x € O and z, then z € Cy. Let z; be the neighbor of u;11 in Qui“iﬂ' Now z & ('}, else since
x,; is adjacent to z, then x; € U and, since x; is not adjacent to z, Claim 1 is contradicted.

J
So since z is adjacent to x and to z;, then z is in U. Now Quiui+1 has length 2 and z has no

neighbor in V(Q) \ V(Qu_u_+1) else the minimality of P is contradicted. Let P’ be obtained

from P by removing z; and adding 2. Now P and P" have the same length and P contradicts
the fact that P has the largest number of neighbors in C';. So no two consecutive nodes of )
are universal for (.

Let x; be the node of smallest index adjacent to k. Since by our choice, k is not adjacent
to u; but is adjacent to all the nodes us,...,u, = x,,, such a node exists and it belongs to
Q%u2 (possibly n = 2). If z; = uy, let H = w,ul,Qu1u2,u2,x, and (H,k) is a cap. So by
the same argument as above, there exists a node z not in K universal for H. Again, the
above argument rules out the existence of such a node z and so z; is an intermediate node

of Qulug' Let H = x,ul,Qulxi,xi,k,m. Since v; &€ U, v, is not adjacent to any node in
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Q“ﬂi' Now (H,v;) is a cap and so there exists a node z not in K universal for H. Since
x; = u; is adjacent to x € C and z, z € Cy. Since z, is adjacent to z but not to x € C},
by Claim 1, z ¢ C. So the same argument as above rules out the existence of such a node
z when z is adjacent to z,, x5, and x3. So i = 2 and z is adjacent to z;, x, but not xj.
By Lemma 2.2(i), G \ {z,k} contains a chordless path R = v; = ry,...,7, = z. Note that
intermediate nodes of R may be adjacent to x or k but not to x; or z,. At least one node of
R belongs to C; U K, otherwise there exists a path from v; to C; whose intermediate nodes
are in V(R) U V(Q) and this path contains no node of C; U K, thus proving that v; € U, a
contradiction. So let r; be the node of R with lowest index in C; U K. Then r; is adjacent
to cy. Solet S =5, =vy,...,5, 1 = 3,5, = Ty be a shortest v;xy-path whose nodes are in
R, , UQ, , . Since Sy, isa direct connection from v, to H, avoiding 2 and k, by Lemma
2.2(i), x5 must be a twin of node k with respect to H (indeed, x5 is not adjacent to z, so it
can be neither universal for H nor a twin of z). Now, by Lemma 2.2(ii), z is adjacent to zj,
a contradiction. This completes the proof of Claim 2.

The following claim shows that (A, B, K”) is an amalgam of G.

Claim 3: Let G” be obtained from G by removing all edges with one endnode in A and
the other in B. Then in G"(V(G) \ K"), no path connects a node in A and a node in B.

Proof: Let P =x1,...,x, be a chordless path between z; in A and x, in B and contra-
dicting the claim. Claim 1 shows that if x, € C5, then x5 € U, a contradiction. Claim 2
shows z, € K'. So z,, € U and let P,, be a path with nodes in V(G) \ (C; U K) connecting
x, and a node in Cy. Now there is a path with nodes in V(G) \ (Cy U K) between 2 and a
node in Cy only using nodes of V(P,,, ) UV (P). So x9 must belong to U, a contradiction. O

2.2 M-structures

M-structures were first introduced by Burlet and Fonlupt [2] in their study of Meyniel graphs.

An induced subgraph G(V7) of G is called an M-structure (multipartite structure) if G(V})
contains at least two connected components each with at least two nodes. Let Wq,..., Wy
be the node sets of these connected components. The proper subclasses of G(V7) are the sets
W; of cardinality greater than or equal to 2. The partition of an M-structure is denoted by
(Wi,...,W;, K) where K is the union of all non-proper subclasses. Note that K induces a
clique in G.

Lemma 2.5 An M-structure G(V1) of G is mazimal with respect to node inclusion, if and
only if there exists no node v € V(G) \ V1 such that v is universal for a proper subclass of
G(W).

Proof: Let G(V1 U{u}) be an M-structure. Assume node u is not universal for any proper
subclass of G(V1). In G(V; U {u}) node u is adjacent to at least one node in each of the
proper subclasses. Thus there exists only one proper subclass in G(V; U {u}), contradicting
the assumption.

Conversely let node u be universal for some proper subclass W; of G(V;). Then G(ViU{u})
has at least two components with more than one node, the graph induced by W; and at least
one component with more than one node in (V3 U {u}) \ W;. O
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The above proof yields the following:

Corollary 2.6 Let G(Vl)_ and G(ng be M-structures with Vi € Va. Let Wy and Z; be
connected components of G(V1) and G(Va) respectively having nonempty intersection. Then
W; C Z;.

Lemma 2.7 Let G(V1) be a mazimal M-structure of a GM-graph G that has no clique cutset.
Then no node in V(G) \ Vi can be adjacent to two distinct proper subclasses of G(V1).

Proof: Assume node 2’ € V(G)\ V] is adjacent to two proper subclasses Wy and Wy of G(V7).
Since G(V7) is maximal, by Lemma 2.5 node ' is not universal for either of the classes. Also
since G(W) is connected, W, contains a pair of nonadjacent nodes z1,y;, such that 2’ is
adjacent to x1 but not to y;. Similarly W, contains a pair of nonadjacent nodes x3,y2 such
that 2’ is adjacent to xo but not to yo. Let H = x1,x9,y1,y2, 2. Then (H,z') is a cap. Since
G has no clique cutset, by Lemma 2.2(iii), G contains a node z (possibly ' = x) adjacent to
x1, 22 but not to y1,y2 and two nonadjacent nodes u, ' that are universal for the cap (H,x).

Claim 1: Nodes u and v’ are universal for Wy and Wy and neither u nor v’ is in W, UW,,.

Proof: Note first that the edges of G(V]) that have their endnodes in {x{, v, To, Yo, T, u, u'}
are T,yy, Tols, TYy, Ty and wu'. If the claim does not hold, then W, or W, say Wy, has
the property that, in G, u or u' has a neighbor in Wy, or w or «/ is in W;. In both cases,
G(W, U {x,u,u'}) is connected. Consider a shortest path in this graph between x and w,
w. Wlo.g. let P =w,z,...,z2,,2 be such a path. Now if n = 1 and «’ is adjacent to z
in G, then G contains a triangle z,,u,u’ together with a chordless path z;,z,¥s, s and no
other edge connects the triangle and the path. This is the complement of a T-parachute on
six nodes. Otherwise, if » > 1 or « is not adjacent to z; in G, then u,z,..., z,,, Yy, To
contains a chordless path of length five. Again, this is the complement of a T-parachute on
six nodes and the proof of Claim 1 is complete.

So by Lemma 2.5, since u, v’ are nonadjacent, they must belong to the same proper
subclass of G(V1), say W3, which is distinct from W, W,.

Claim 2: Node x is universal for Wi.

Proof: Assume not. Then G(W5U{z}) is connected. Let P = u, 2q,. .., 2,, = be a shortest
path in this graph between u, v/, say u, and z. Now the same proof as in Claim 1 shows the
existence of a parachute.

So, by Lemma 2.5, x belongs to G(V;). However, in G(V;), x is adjacent to y, € W, and
Yo € Wy, a contradiction to the fact that W, W, are distinct proper subclasses of G(V;). O

Theorem 2.8 If G is a GM-graph containing an M-structure either with at least three proper
subclasses, or with at least one proper subclass which is not a stable set, then G contains a
clique cutset or an amalgam.

Proof: If G contains a D-structure (C1,Ca, K) then, by Lemma 2.4, G contains an amalgam.
So the theorem follows from the proof of the following statement:

If G is a GM-graph containing an M-structure either with at least three proper subclasses,
or with at least one proper subclass which is not a stable set, then G contains a D-structure

(C1,Cq, K).
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Let G(V1) be an M-structure of G satisfying the above property and G(V42) a maximal
M-structure with V7 C V5.

Claim 1: The M-structure G(Va) either contains at least three proper subclasses or con-
tains exactly two proper subclasses not both of which are stable sets.

Proof: If G(V1) contains a proper subclass, say W;, which is not a stable set, by Corollary
2.6, there exists a proper subclass, say Z; of G(Va) such that W; C Z;. Then Z; is not a
stable set. If all proper subclasses of G(V}) are stable sets, then G(V}) has at least three
proper subclasses say Wy, W, ..., Wj. If G(V2) has only two proper subclasses, say Z1, Zo,
then by Corollary 2.6, we may assume w.l.o.g. that W3 U Wy C Z;. Then Z; is not a stable
set, since every node in W7 is adjacent to a node in Ws. This completes the proof of Claim 1.

Claim 2: Suppose that G(Va) is a mazimal M-structure of G with partition (W, Wa, K),
where W1 is not a stable set. Then G contains a D-structure (C1, Co, K).

Proof: Let C7 be a connected component of G(W;) with more than one node. Let
Cy = Wy. Then (C1,Cq, K) is a D-structure, since by Lemma 2.7 no node of V(G) \ V» is
adjacent to a node in C7 and a node in Co, and |Cy| > 2, since W5 is a proper subclass of
G(V2). This completes the proof of Claim 2.

Claim 3: Suppose that G(V3) is a mazximal M-structure of G with at least three proper
subclasses. Then G contains a D-structure (C1,Ca, K).

Proof: Let Wy, Ws,...,W;, I > 3 be the proper subclasses of G(V2) and let K be the
collection of all non-proper subclasses. Let C; be the nodes in two proper subclasses of
G(V2) (note that G(Ci) is a connected graph), Cy be the nodes in all the other proper
subclasses of G(V2). Then (C1, Co, K) is a D-structure since |C1| > 2, |Cy| > 2 and Lemma
2.7 shows that the only nodes having neighbors in both C; and Cs belong to K. So the proof
of Claim 3 is complete. a

Corollary 2.9 Let G be a GM-graph that contains a cap. Then G contains a clique cutset
or an amalgam.

Proof: Assume G contain a cap but no clique cutset. By Lemma 2.2, G contains a cap (H,z)
and nonadjacent nodes u, u’ universal for (H,z). Since G(V (H)Uw) is connected, G contains
an M-structure with proper subclasses W, = {u,u'} and W, = {V(H) Uz} and W, is not a
stable set. By Theorem 2.8, GG contains an amalgam. a

In [7], it was shown that, if G is a cap-free graph, then G contains an amalgam or G is
triangulated or G is a triangle-free graph plus at most one universal node. Theorem 1.15
follows from this result and Corollary 2.9. Here, for the sake of completeness, we give a direct
proof (without using [7]).

2.3 Expanded Holes

An expanded hole consists of nonempty sets of nodes Si,...,S,, n > 4, not all singletons,
such that, for all 1 < i < n, the graphs G(S;) are connected. Furthermore, every s; € S; is
adjacent to s; € S;, i # j, ifand only if j =i+ 1 or j =4 — 1 (modulo n).
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Lemma 2.10 Let G be a cap-free graph and let H be a hole of G. If s is a node having two
adjacent neighbors in H, then either s is universal for H or s together with H induces an
expanded hole.

Proof: Let s be a node with two adjacent neighbors in H. If s has no other neighbors on
H, then s induces a cap with H. Let H = z1,...,x,, 21 with node s adjacent to x; and
Zp. If s is not universal for H, and does not induce an expanded hole together with H, then
let k& be the smallest index for which s is not adjacent to xp. Let [ be the smallest index
such that [ > k and s is adjacent to z;. Now node xy_o (x, if & = 2) together with the hole
S, Xk_1,---,2,s forms a cap. O

Lemma 2.11 Let G be a cap-free graph and let S = U]_,S;, n > 4, be a mazrimal expanded
hole in G with respect to node inclusion. Fither G contains an M-structure with a proper
subclass that is not a stable set of G, or all nodes that are adjacent to a node in S; and a
node in Sjy+1 (Sp+1 = S1) for some i, are universal for S and induce a clique of G.

Proof: Let u be a node adjacent to s; € S and so € Sy. By applying Lemma 2.10 to any hole
that contains s; and sy and a node each from the sets S;, j > 2, we have that u is adjacent
to all nodes in S\ (S U S2), else the maximality of S is contradicted. Now since node u is
adjacent to sq, s and is universal for all sets S;, j > 2, Lemma 2.10 shows that u is universal
for S7 and S5, hence for S.

Let u and v be two nonadjacent nodes that are universal for S. Then u, v together with
s1 € S1, sg € S9 and s4 € Sy induces an M-structure with proper sets Wi = {u,v} and
Wy = {s1, 89, 84}. Furthermore W5 is not a stable set of G. O

Theorem 2.12 A cap-free graph that contains an expanded hole contains a clique cutset or
an amalgam.

Proof: Let S = U} S; be a maximal expanded hole in G. First assume that n = 4. Then
the node set S induces an M-structure with proper subclasses 57 U S3 and Ss U Sy. Sy U Sy
is not a stable set because, say, |Sa| > 2 and G(Ss2) is connected. Hence by Theorem 2.8 we
are done. Now assume that n > 4. By Theorem 2.8 we may assume that G does not contain
an M-structure with a proper subclass that is not a stable set of G. By Theorem 2.4, it is
sufficient to show that G contains a D-structure (C1,Cs, K). Assume w.l.o.g. that |Sa| > 2
and let K be the set of nodes that are universal for S. Lemma 2.11 shows that K is a clique
of G. Let C; = S5 and Cy = S51US3. Lemma 2.11 shows that every node that is adjacent to a
node of C7 and a node of C5 is universal for S and hence belongs to K. Therefore (C1,Co, K)
is a D-structure. i

2.4 A Proof of Theorem 1.15

Now we are ready to prove Theorem 1.15.

Proof: If G contains a cap, by Corollary 2.9, G contains a clique cutset or an amalgam.
Assume that G is a connected cap-free graph. If G is a triangulated graph, G is either
a clique or it contains a clique cutset. If G is a clique and contains at least four nodes, G
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contains a join and if G contains less than four nodes, then G is a triangle-free graph plus at
most one universal node.

Assume now that G is a connected cap-free graph that contains a hole. Let F' be a
maximal node set inducing a biconnected triangle-free subgraph of G. Assume that G does
not have a clique cutset or an amalgam.

Claim 1: Every node in V(G) \ F that has at least two neighbors in F is universal for
F.

Proof: Let u be anode in V(G)\ F having at least two neighbors in F. The graph induced
by FU{u} contains a triangle u, x, y else the maximality of F'is contradicted. Let H be a hole
in G(F') containing = and y. (H exists since, by biconnectedness, = and y belong to a cycle
and since G(F') contains no triangle, a smallest cycle containing x and y is a hole). Lemma
2.10 shows that either w is universal for H or forms an expanded hole with H. Theorem
2.12 rules out the latter possibility. Let F’ C F be a maximal set of nodes such that G(F")
contains H, is biconnected and such that node w is universal for F’. If F # F’, then since
G(F) and G(F') are biconnected, some z € F'\ F’ belongs to a hole that contains an edge of
G(F'). Let H' be such a hole. By Lemma 2.10 and Theorem 2.12, node u is adjacent to all
the nodes of H'. Let F” = F' UV (H'). G(F") is biconnected, u is universal for F”’. Hence
F" contradicts the maximality of F’. Hence u is universal for F' and the proof of Claim 1 is
complete.

Claim 2: Let U be the set of universal nodes for F'. Then the nodes in U induce a clique
of G.

Proof: Let w,z € U be two nonadjacent nodes of U and let vy,...,v,,v1 be a hole of
G(F). Then nodes w, z together with vy, ve, v3 and vy induce an M-structure, either with
two proper subclasses not both of which are stable if v; and v4 are not adjacent, or with
three proper subclasses. By Theorem 2.8, G contains an amalgam. This completes the proof
of Claim 2.

Claim 3: V(G) = FUU.

Proof: Let S = V(G) \ (FUU). By Claim 1, every node in S has at most one neighbor
in F. Let C be a connected component of G(S). By maximality of F, there is at most one
node in F, say y, that has a neighbor in C. If such a node y exists, let Cy,...,C; be the
connected components of G(S) adjacent to y. Let Vi = C1U...CiU{y}, A={y}, K =U,
Vo =V(G)\ (V1 UK) and B be the set of neighbors of y in F. Then (4, B, K) is an amalgam
of G, separating V) from V5.

If no component of G(S) is adjacent to a node of F,let Vi =UUS, A=U, Vo =B =F.
Then (A, B, () is an amalgam of G. This completes the proof of Claim 3.

If U contains at least two nodes, then let Vi = A =U, Vo = B = F and (4, B,0) is an
amalgam of G. If U contains at most one node, then G is a triangle-free graph plus at most
one universal node. O

3 Line graphs of triangle-free graphs and extensions

In this section, we prove Theorem 1.16.
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3.1 L-graphs

If G is the line graph of a graph H, the nodes in a maximal clique of G correspond either to
the edges in a triangle of H or to the edges incident with a node of H.

A graph G is LA-free if G is the line graph of a triangle-free simple graph. In this case,
there obviously is a one to one correspondence between maximal stars of H and maximal
cliques of G.

Harary and Holtzmann [11] characterize the line graphs of bipartite simple graphs. In
Remark 3.1 below we characterize LA-free graphs in a similar way. The proof can be easily
deduced from the proof of Remark 3.2.

Remark 3.1 The following three conditions are equivalent.

1) G is LA-free.

2) G contains no claw and no diamond.

3) Every node v € V(G) belongs to at most two mazximal cliques C and Cs, and no node
of C1 \ {v} is adjacent to a node in Cy \ {v}.

Maffray and Reed [12] characterize the line graphs of bipartite multigraphs. The following
remark has a similar proof and characterizes the line graphs of triangle-free multigraphs. A
gem is a graph induced by a 5-cycle a, b, c,d, e, a with chords ac and ad.

Remark 3.2 The following three conditions are equivalent.

1) G 1is the line graph of a triangle-free multigraph H.

2) G contains no claw, no gem and no universal 4-wheel.

3) Every node v € V(G) belongs to at most two mazimal cliques Cy and Ca, and C1 N Cy
consists of v and all its twins. No node of Cy \ Cq is adjacent to a node in Cs \ C1.

Proof: Assume G is the line graph of a triangle-free multigraph H. Since an edge of H has at
most two endnodes, G is claw-free. Assume G contains a gem G’ with V(G') = {a, b, c,d, e}
and E(G") = {ab,bc, cd, de, ea, ac,ad}. Since {b,c,a,d} induce a diamond of G, the edges eg,
e. of H corresponding to the nodes a and ¢ of G are parallel edges with endnodes s, ¢, while
ep has s but not ¢ as endnode and ez has ¢ but not s as endnode. By the same argument
applied to the diamond induced by {a,c,d, e}, eq, €4 are parallel, a contradiction. So G
cannot contain a gem. The same argument shows that G cannot contain a universal 4-wheel
and 1) — 2).

Assume that G satisfies 2) and suppose first that v belongs to three maximal cliques,
Cy, Cy, C5. Since every pair of cliques contains nonadjacent nodes, Cy contains (possibly
coincident) nodes a9, as, Co contains (possibly coincident) nodes by, by and C5 contains
(possibly coincident) nodes ¢;, c¢o where b; and ¢;, ag and co, as and bs are nonadjacent.
Together with v, these nodes induce a graph that contains a claw, a gem or an universal 4-
wheel. For, choose as,as, bs, b1, c1,cs so that they form the maximum number of coincident
pairs. If all three pairs are concident, there is a claw. If two of the pairs are coincident,
there is a gem. Otherwise there is a universal 4-wheel. So every node of GG is in at most two
maximal cliques. C7 N Cy obviously contains all twins of v. If a node in C7 N5 is not a twin
of v then it belongs to three maximal cliques, a contradiction. Finally, if a node of Cy \ Co
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is adjacent to a node in Cy \ C1, v is in at least three maximal cliques, again a contradiction
and 2) — 3).

Assume that G satisfies 3) and construct H as follows: V(H) corresponds to the set of
maximal cliques of G. For every node belonging to a unique maximal clique C, add to H a
pendant edge attached to the node v¢,. For every node belonging to maximal cliques C, Cs,
add to H an edge with endnodes ve, and ve,, so that the nodes in Cy N Cy are associated to
parallel edges. Since no node of C; \ Cs is adjacent to a node of Cy \ C1, G is the line graph
of H and H is a triangle-free multigraph. So 3) — 1). O

Let G be an LA-free graph. Let G’ be an induced subgraph of G and K’ be a clique of G’
with at least two nodes. Since G contains no diamond by Remark 3.1, there exists a unique
clique K of G containing K’. We say that K is the extension of K'.

We say that a clique K of G is big if K has more than two nodes and K is flat if K
contains exactly two nodes. Unless otherwise specified, all the cliques will be maximal.

A connected graph G has a 2-node cutset {u,v} if G\ {u,v} is a disconnected graph.

Definition 3.3 A graph G is an L-graph if it is an LA-free graph and it satisfies the following
properties.

a) G is connected, contains a big clique and every node of G is in two cliques. (Equiva-
lently, H is connected, contains a node of degree at least 8 and every node has degree
at least 2).

b) G contains no join. (Equivalently, H contains no cutnode).

¢) For every 2-node cutset of G, one of the components is an induced path. (Equivalently,
if H contains two edges whose removal disconnects H, then one of the two components
is a path).

It follows from this definition that if G is an L-graph, then G contains at least two big
cliques. In fact, every hole of G has at least two edges belonging to big cliques.

A segment S of an L-graph G is a maximal induced connected subgraph of G such that
no pair of nodes of S belongs to the same big clique of G. Note that a segment is a chordless
path of G and may have length one or zero. Every node z of GG is in exactly one segment,
that we call S, so the segments of G partition V(G). A segment S is long if |[V(S)| > 3,
short it |V (S)| = 2 and atomic if |V (S)| = 1. Furthemore if a segment S is short and K,
K, are the big cliques containing the endnodes of S, no atomic segment is in K, N Ky (i.e.
K, N K, is empty) since G contains no diamond.

Every L-graph has at least three segments. If G is a 3PC(A, A) or an L-wheel, then G
is an L-graph and G is minimal with this property. These two graphs are called elementary
L-graphs.

Lemma 3.4 Let Sy, So, S3 be three segments in an L-graph G. Then G contains an elemen-

tary L-graph B, such that Si, So and Ss are all in B and S1, Sy are contained in distinct
segments of B.
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Proof: By Definition 3.3 b), H is 2-connected and therefore H contains a cycle going through
any two given edges. This implies the existence of a hole in G going through nodes z; € Sy
and xo € Sy. Since all cliques of S7, Sy are atomic or flat in G and S, So are maximal with
this property, it follows that, in every hole C' = Py, S1, P», So of G going through x; and zo,
at least one edge of P, and at least one edge of P, are extendable to big cliques of G.

Assume first that G contains a hole C' going through z; and zo such that S3 € C. Let
C = l’l,Ql,l’Q,QQ,IL‘l, where P1 - Ql and PQ - QQ. By Definition 3.3 C), Ql \ {1’1,1’2} and
Q2 \ {1, 2} are in the same connected component of G \ {z1,x2}, so they are connected by
a shortest path P in G \ {z1,x2}. Since every node of C' is in two cliques and the cliques of
S, Sy are atomic or flat in G, then P = yi,...,y,, (possibly m = 1) , where y; belongs to
an extension of a clique in P} and y,, belongs to an extension of a clique in P. If m =1,
C' U P induce an L-wheel and if m > 1, C' U P induce a 3PC(A, A).

Assume now that no hole C' going through z; and o contains S3. By Definition 3.3 b), ¢)
Ss3 belongs to a path P = y1,...,ym (possibly m = 1) , where y; belongs to an extension of
a clique of P; and y,, belongs to an extension of a clique P,. This shows that C' U P induce
an elementary L-graph of G. O

Lemma 3.5 Let C' be a hole of an L-graph G. For every segment Ss of G \ C, there is a
path P in G containing Ss such that C'U P is an elementary L-graph G1 in G. The segments
of Gy are P and two subpaths of C.

Proof: The proof is identical to the previous one. i

3.2 Tripods

A triad is a graph consisting of three internally node-disjoint paths ¢,...,z; t,...,y and
t,...,z of length greater than one, where t, x, y, z are distinct nodes. Furthermore, the
graph induced by the nodes of the triad contains no other edge than those of the three paths.
Node t is the meet of the triad.

A fan is a graph consisting of a path P = «x,...,y of length greater that one, together
with a node z not in P adjacent to at least one intermediate node in P and not adjacent to
x and y. Node z is the center of the fan and the edges connecting z to P are the spokes.
Furthermore, the graph induced by the nodes of the fan contains no other edge than those
of P and the spokes.

A stool consists of a triangle x'y’z’ together with three node-disjoint paths 2/,...,x;
y,...,yand 2/,..., z of length at least one. Furthermore, the graph induced by the nodes of
the stool contains no other edges than those of the triangle and of the three paths.

A tripod is a triad or a stool or a fan. Nodes x, y and z are called the attachments of the
tripod.

Lemma 3.6 Let G be a node-minimal graph with the following properties.
(1) G contains nodes x, y, z such that no edge has both endnodes in {z,y,z}.
(i) V(G) \ {z,y, z} is nonempty.
(i1i) G and G\ {z,y,z} are both connected.
Then G is a tripod with attachments x, y and z.
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Proof: Let G be a graph with the above properties and let Pyy = v = y1,...,ym =y be a
shortest zy-path in G \ {z}, P;, and P, similarly defined. Assume w.l.o.g. that P, is not
shorter than any of the other two. If P, contains an intermediate node that is a neighbor of
z, then by the minimality of G, V(G) = V(Pyy) U{z} and G is a fan.

Otherwise let P = zi,...,2, be a direct connection between z and V(Pyy) \ {z,y} (P
exists since G and G \ {z,y, 2z} are both connected), and let P, = z,21,...,2,. By the
minimality of G, V(G) = V(Pyy) UV (F;) and z, either has a unique neighbor in P, or z,
has two neighbors in P, and these neighbors are adjacent.

By the minimality of G, at most one among x and y has a neighbor in P,. Assume z has
a neighbor in P,. Then by the minimality of G, z, is adjacent to the neighbor of z in Py,
possibly to z and to no other node of P,,. Now P,y is longer than P,,, contradicting our
choice. So by symmetry, neither x nor y have a neighbor in P, and therefore if z, has two
neighbors in Py, neither of these nodes is « or y and we have a stool in this case. Finally, if
Zp has a unique neighbor in P, say t, then ¢ is not adjacent to = or y else our choice of Py
is again contradicted and in this case we have a triad. O

3.3 Links

Let G be a graph that contains an L-wheel or a 3PC(A, A).

Let G’ be an L-graph that is an induced subgraph of G. A link of G’ is a chordless
path P = z1,...,2, in G\ G’ (possibly n = 1) such that z; has a neighbor z¢ in G', z,
has a neighbor x,,1 in G', and xg, T,11 are nonadjacent nodes in distinct segments of G’.
Furthermore P is minimal with the above property.

Lemma 3.7 Let G’ be an L-graph that is an induced subgraph of a graph G. Let U be a
connected component of G\ G' such that N(U) NG’ is not contained in a clique of G' and is
not contained in a segment of G'. Then

a) either U contains a link, or

b) NU)NV(G') ={z, y, 2z} where x and y are the distinct endnodes of a long segment
and z is an atomic segment such that z = K, N Ky, where K, and Ky are the big cliques
containing x and y.

If G is a WP-free graph, only a) can occur.

Proof: If N(U) NG’ contains two nodes that are nonadjacent and in distinct segments, then
a) holds. So we may assume that this is not the case.

Since N(U) NG’ contains two nodes, say = and z, that are in distinct segments, then x
and z belong to some big clique K, of G’. Since N(U) N G’ contains a node y not in K,
by Remark 3.1 3) we can assume that y is not adjacent to x. Since a) does not hold, the
segments S, Sy coincide, so S, Sy are distinct. This implies that z and y belong to some
big clique Ky and z = K, N K,, is an atomic segment of G’. Now all the other nodes of G’
are readily seen to be nonadjacent to U. So b) holds.

Now, we show that if G is a WP-free graph, only a) can occur. Assume now that b)
holds and let S, be the long segment of G’ containing z and y and S, the atomic segment
containing z. Since G’ is an L-graph, by Lemma 3.4, G’ contains an elementary L-graph G”
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containing S, and S, in distinct segments and G” must be an L-wheel with atomic segment
S..

Let U’ be the subgraph of G induced by V(U) U {x,y, 2} with edges xz, yz removed. By
Lemma 3.6 U’ contains an induced subgraph T' which is a tripod with attachments z, y, 2.
We show that the graph G” U T contains a proper wheel or a parachute or a 3PC(A,-).
Therefore if G is a WP-free graph, b) cannot occur and a) is the only possibility.

If T is a triad, then G” UT contains an L-parachute LP(z'x,y'y, z,t), where t is the meet
of the triad.

If T is a stool with triangle abc, then G” U T contains a 3PC (abe, ).

If T is a fan with center z, then G” UT contains a proper wheel with center z.

If T is a fan with center x or y but not z, say z, let P, be a shortest yz-path in T
and (), be the chordless cycle closed by edge yz with P,.. If x has two neighbors in Cy.,
then these neighbors are nonadjacent (since 7' is not a fan with center z). So, in this case,
we have an L-parachute of type a) LP(z'x,y'y, 2,t), where t is the neighbor of z distinct
from z. Now assume that z has at least three neighbors on P, .. Since (Cy., ) is a wheel
which is not proper, (Cy.,x) is either a A-free wheel or a T-wheel or an L-wheel. We then
have an L-parachute LP(2'x,y'y, z,t) where ¢ is the neighbor of  closest to y in P,,. This
L-parachute is of types b), ¢) or d). (Remark that in this proof we have not used the fact
that G contains no T-parachute). |

So it is important to study the links of an L-graph G’ of G. The following lemma gives a
list of all possible links, when G’ is an elementary L-graph.

Lemma 3.8 Let G be an even-signable WP-free graph, G' an elementary L-graph in G and
P=uxy,...,2, be a link of G'. Then

a) either G" U P is an L-graph, or
b) n =1 and x1 is either universal for G' or the twin of an endnode of a segment of G'.

Proof: We use the following notation: The two big cliques of G’ are A = {a1,a9,a3} and
B = {b1,by,b3}. The segments of G’ are P, = aq,...,b;, Py =as,...,by and P3 = ag,...,bs.
If G’ is an L-wheel, then a3 = b3 and the segment Pj is atomic, while P; and P, are long
segments. Otherwise G’ is a 3PC(A, A) and its segments are either long or short. The nodes
in distinct segments P; and P; induce a hole of G’, that we denote with H;;.

Case 1 n=1.
Let xg, xo be neighbors of x; that are nonadjacent and in distinct segments, say P; and
Pj, of G'. Then either zy, x are the unique neighbors of x; in Hj; or (Hyj,x1) is a wheel.

Case 1.1 x¢, z2 are the unique neighbors of x; in H;j, or (H;;,x1) is a A-free wheel.

Case 1.1.1 G’ is a 3PC(A,A).

Assume w.l.o.g. that = 1 and j = 3. Now z; has more that two neighbors in G’, else
we have a 3PC(A,xg) or a 3PC(B,xg). If 1 has at most one neighbor in A and at most
one neighbor in B, we have a 3PC(A,z1) or a 3PC(B,x1). Since no two neighbors of x;
in Hy3 are adjacent, then x1 cannot be adjacent to both a; and as or both b; and b3, so by
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symmetry we may assume that x; is adjacent to as, ag but not to a;. Let zg be the neighbor
of 1, closest to a; in P;. Then we have a T-parachute T P(as,as,x1,a1,x) of type a or b.

Case 1.1.2 G’ is an L-wheel.

Assume first that 4 = 1 and j = 2. If z7 has at most one neighbor in A and at most one
neighbor in B, we have a 3PC/(A,x1) when x; has at least three neighbors in G’ and when
x1 has two neighbors in G’ we have a 3PC(A, x¢) or a 3PC(B,x). So by symmetry, we may
assume that z; is adjacent to bs = ag, bs but not b;. Let zg be the neighbor of x1, closest
to by in Py. Now xq is distinct from aq, else let C' = aq, Py, b1, bs,x1,a1 and (C,bs) is an odd
wheel. Now we have a T-parachute T'P(bs, bs,z1,b1,20) of type a or b.

Assume now that ¢ = 1 and j = 3. If (Hy3, 1) is a A-free wheel and x; has no neighbor in
Ps, then there is a proper wheel with center as and if x; is adjacent to as, g and to no node
in Py, then we have an L-parachute LP(asa1,bsbr,as, zg). So x1 has at least one neighbor
in P». Now z; is adjacent to ag or by, say be, else we have a 3PC(A,x1). Then we have a
T-parachute T P(bs, bs, x1, b1, z0), where xq is the neighbor of x1, closest to b; in P;.

Case 1.2 (H;j,x1) is a universal wheel.
We may assume that x1 is not universal for G, else b) holds.

Case 1.2.1 G’ is a 3PC(A,A).

Assume w.l.o.g. that (Hy3, 1) is a universal wheel. Then both P; and Ps have length less
than three, otherwise (Hjg,x1) or (Has,x1) is a proper wheel. Furthermore, since (His,x1)
is an even wheel, either both P; and P; have length one or both P, and P3 have length two.
Assume P, = ay,t1,b; and Ps = ag,t3,bs. Then x; has no neighbor in P, else (Ha3,x1)
is a proper wheel. Now the graph induced by V(G’) \ {as,ts} U {x1} is a T-parachute
TP(bs,b1,21,b9,a1) of type c.

Assume P; = ay,b; and P = ag, bs. Then z; has neighbors in P, else V(G')\{a1 }U{z1}
induces an odd wheel with center bs. So (Hjo,z1) is an L-wheel or a T-wheel. If (Hi9, 1)
is a L-wheel, let x5, x3 be the neighbors of x;, where x5 is closest to by in P. Then
V(G')\ {a1} U{x1} induces an L-parachute of type ¢ LP(x3xs,agbs,x1,b). If (Hio,x1) is a
T-wheel, with z; adjacent to, say, by we have a T-parachute T'P(bs, x1,as, ba,as) of type c.

Case 1.2.2 G’ is an L-wheel.

If (Hy2,71) is a universal wheel and x; is not adjacent to ag = bs, then P, and P, have
both length 2, else (Hi3,x1) or (Has,x1) is a proper wheel. But then, we have a T-parachute
TP(az,a1,21,as,b1) of type c.

If (Hy3,21) is a universal wheel, then z1 has at least one neighbor in P, since otherwise
(H,as3) is a proper wheel where H = ag, P5,ba, b1, 21, a1, a2. But now, since z; is not universal
for G', (Hy2,x1) is a proper wheel.

Case 1.3 (H;j,x1) is an L-wheel or a T-wheel.

If 1 has at most one neighbor in A and at most one neighbor in B, then (H;j,x1) is an
L-wheel and z; has no neighbor in Py, k # i,j, for otherwise we have a 3PC(A,x;), and
in this case a) holds. So by symmetry, we assume that z; has at least two neighbors in B.
Furthermore 1 is adjacent to both b; and b;, since otherwise, if 1 is adjacent to b; but not
bj, then (Hyj,x1), (Hig,x1) or (Hji, 1), k # 4, ], is a proper wheel or H,), together with b;
and z; induces a T-parachute of type c.

Case 1.3.1 GG’ is an L-wheel.
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Assume ¢ = 1 and j = 3. Then x; is adjacent to by and bs.

If (Hy3,21) is an L-wheel, then by is the only neighbor of z1 in P, else (Hig,z1) is a
proper wheel, and a) holds.

If (Hy3,71) is a T-wheel, then either x; is adjacent to the neighbor o} of b in Pj, or x;
is adjacent to a;.

If z; is adjacent to b}, then z; has a neighbor in P,, else we have an L-parachute
LP(azay,boby,as, b)) of type c. Since x; is not adjacent to a;, (Hy2,21) is an L-wheel or
a T-wheel. If (Hya,x1) is a T-wheel, then by is the only neighbor of 21 in P, so z; is a
twin of by and b) holds. If (Hj2,21) is an L-wheel, then the neighbors of z; in P; are as
and its neighbor in P, else (Ha3,x1) is a proper wheel. But now we have a T-parachute
TP(bl, xy, b3, bll, al) of type C.

If z1 is adjacent to a1, then z; has a neighbor in Ps, else we have a proper wheel with
center bs, so (Hjg, 1) must be an L-wheel, ;1 is a twin of ag and b) holds.

Assume ¢ = 1 and j = 2. Then x; is adjacent to b; and bs.

If (Hy9,21) is an L-wheel then z; is adjacent to ai, ag, b1, by and no other node of Hy,,
else there is a proper wheel with center as. If z; is adjacent to by, it is a twin of by and b)
holds, and if z; is not adjacent to by, we have a T-parachute T'P (b, by, as,1,a1) of type a.
If (Hy2,21) is a T-wheel then 27 is w.l.o.g. adjacent to by, by, b} and no other node of Hy,.
If z; is adjacent to bg, it is a twin of b; and b) holds, and if x; is not adjacent to bs, we have
an odd wheel with center bs.

Case 1.3.2 G’ is a 3PC(A, A).

Assume w.l.o.g. that i = 1 and j = 3. Then z; is adjacent to b; and bs. If (His,z1) is
an L-wheel and x; has two neighbors in Py \ {b1} or Ps\ {b3}, say P, \ {b1}, then by is the
only neighbor of 1 in Ps, else (Hi9, 1) is a proper wheel, and a) holds. If z; is adjacent to
ay and ag, then x1 has a neighbor in P;, else we have a T-parachute T'P(aq, as,as,z1,bs). If
(Hag, 1) is a A-free wheel, there is a T-parachute. So (Hag,z1) must be an L-wheel, 27 is
adjacent to both as and by and a) holds.

If (Hi3,21) is a T-wheel, then assume w.l.o.g. that x; is adjacent to b]. Node z; has
a neighbor in P, since, otherwise, there is an odd wheel with center b;. Now suppose that
(H,y, ;) is a universal wheel. Then, there is a T-parachute T P(ay, ay, as, x,by). So (Hia,x1)
is an L-wheel or a T-wheel. (Hi2, 1) is a T-wheel, else (Hag, 1) is a proper wheel. If P, has
length one and z; is adjacent to a; and a,, there is a T-parachute TP(a;, ag,as,x;,by). So
by is the only neighbor of z; in P and b) holds.

Case 2 n > 1.
By Lemma 3.7, since P is a link, the neighbors of z; in G’ are either contained in a big
clique A or B or in a segment of G’ and the same holds for x,,.

Claim 1 No intermediate node of P has a neighbor in G'.

Assume node y of G’ is adjacent to an intermediate node x; of P. Since P is a link, by
Lemma 3.7, (N(z1) N G") U {y} is contained in a big clique or a segment of G’ and the same
holds for (N(z,) N G")U{y}. So either y = az = bs, and the neighbors of one endnode of P,
say x1, are contained in A while the neighbors of z, are contained in B or y is the endnode
of a nonatomic segment say P;, the neighbors of one endnode of P, say x1, are contained in
P, and the neighbors of x, are contained in a big clique, say A. This shows that such a node
y is unique.
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Assume first that y = a3 = b3, so G’ is an L-wheel. We also assume w.l.o.g. that z;
is adjacent to a1, while xz,, is adjacent to bs. Now x; is adjacent to as but not to ag, since
otherwise (H,y) is a proper wheel where H = a9, a1,x1, P, xp,bo, Py,as. By symmetry, z,
is adjacent to b; and not to a3. Let z; be the node of lowest index adjacent to a3. Now we
have a T-parachute T'P(as, a1, 21,a3,%;).

Assume now that y = ay, the neighbors of x; are contained in P; and the neighbors of
T, are contained in A, so x, is adjacent to as or as.

If z,, is adjacent to aq, let () be a shortest path between z; and b;, whose intermediate
nodes (if any) are in P. Let Hy = x,,a9, P, b2, b1,Q, 21, P,x,. Now either (Hi,a1) is a
wheel or a; has two neighbors in H; and they are nonadjacent. Now z,, is also adjacent to
as, else let Hy = xy, a9, as, P3,bs3,b1,Q, x1, P, xy, then (Ha,a1) is a proper wheel.

Finally x,, is also adjacent to a1, else we have a T-parachute T'P(as, a3, a1, Zy,x;), where
x; is the node of highest index adjacent to a;. Let H) = xz,,a3,P3,b3,b,Q, 2, P,z,.
Now (Hi,a1) and (Hj,a1) are either both L-wheels or both T-wheels. If z; has a unique
neighbor xy in P;, we have either an L-parachute LP(acjacj_l, Tnag,al,xo) or a T-parachute
TP(xn,a1,Tn_1,a3,20). If x; has several neighbors in P;, we have a 3PC(A,a;) or an
L-parachute LP(xjxj_1,zna3,a1,21) or a T-parachute T'P(xy, a1, Tpn—1,a3,1).

If x, is adjacent to ag and as # bs, the proof is identical. Finally, consider the case where
x,, is adjacent to ag and a3 = b3. If z; has exactly two neighbors on P, and they are adjacent,
there is a 3PC(A, a,) or a proper wheel with center a;. Otherwise, there is an L-parachute
LP(ayay,byby,as,xy) or LP(ayaq,byb;,as,x;) where z; is the node of lowest index adjacent
to a;. This completes the proof of Claim 1.

Case 2.1 All the neighbors of 1 in G’ are contained in a big clique, say A, and all the
neighbors of x,, are contained in B.
We assume w.l.o.g. that x; is adjacent to a; and x, is adjacent to bs.

Case 2.1.1 G’ is an L-wheel.

Assume z1 is adjacent to a; only. Then z, is adjacent to as = b3, else we have an odd
wheel with center as. Let H = a,,z, P,x,,by,b;, P;,a; if z, is not adjacent to b;, and
H=a,,z\,Pz,,b, P,a; if z, is adjacent to b;. Then (H,ag) is a proper wheel.

Assume x; is adjacent to ay, as but not to ag. If x,, is adjacent to a3, we have an odd wheel
with center ag and if x,, is not adjacent to as we have a T-parachute TP (a1, as,x1,as,bs).

Assume z; is adjacent to aj, ag but not to as. Let H = ay,x, P, x,,by, Py,a9,a,. Then
(H,as3) is a proper wheel.

So x; is adjacent to aj, ag, ag and by symmetry, x, is adjacent to by, be, and bs and a)
holds in this case.

Case 2.1.2 G’ is a 3PC(A, A).

Assume z7 is adjacent to a; only. If x,, is adjacent to by only, we have a 3PC(B,ay). If
xy, is adjacent to by, we have a 3PC(b1baxy,a1). If z, is adjacent to bz but not by, we have
a T-parachute T P(bs, by, Ty, b1,a1).

Assume 1z is adjacent to ai, as but not to as. If z, is not adjacent to by, we have a
3PC(ayasxy,by). If x,, is adjacent to by, we have a T-parachute T'P(ag, a1, 21,as3,b) if z,, is
not adjacent to by and a 3PC(bbsx,,,a,) if x,, is adjacent to bs.

Assume x; is adjacent to a1, ag but not to as. By symmetry, we may assume that x,, is
not adjacent to b3 and we have a T-parachute T'P(ay,as,x1,az,bs).
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So x1, is adjacent to ay, as and ag. Again by symmetry, z,, is adjacent to by, by, and bs
and a) holds in this case.

Case 2.2 All the neighbors of x; in G’ are contained in a big clique, say A, and all the
neighbors of x,, are contained in a segment, say P;.
Then z; is adjacent to as or as.

Case 2.2.1 G’ is an L-wheel.

We first show that x, has two neighbors in P; and these neighbors are adjacent. If not,
either P, contains two neighbors of x,, and these neighbors are nonadjacent or P; has a unique
neighbor of x,,. Assume the first possibility holds: If x; is adjacent to as only, we have a
3PC(A,xy). If x; is adjacent to ag only, we have an L-parachute LP(asay,bob1,as,zy). If
x1 is adjacent to ap, ag and possibly ag we have a 3PC(x1a1a3,z,,) if x,, is not adjacent to
both a; and z;, and a T-parachute TP(z1, a1, as,zy,t), where ¢ is the neighbor of z,, in P,
that is closest to by, if z,, is adjacent to both a; and z;. If z; is adjacent to a;, a, but not
as, there is a proper wheel with center a;. Finally if z; is adjacent to as, ag but not a;, we
have a T-parachute T'P(asg,as,a1,x1,2,). So P cannot contain two nonadjacent neighbors
of z,

The same proof rules out the case where P, has a unique neighbor of z,, so x, has two
adjacent neighbors, say y and z, in P; and y is closer than z to a; in P;.

Assume x; is adjacent to ag. Then z is adjacent to a1, else we have a 3PC(znyz,as).
Now z is also adjacent to ag, else we have a 3PC(x,yz,a1) when a; # y and an L-parachute
LP(xpz,x103,a1,b1) of type d when y = a1 and n > 2. When y = a; and n = 2, we have an
odd wheel with center a;. So a) holds in this case.

Assume finally x; is adjacent to as but not as. Then x; adjacent to a1, else we have a
3PC(zpyz,az). Now we have a 3PC(x,yz,a1) when a1 # y and when y = a;, we have a
proper wheel with center a;.

Case 2.2.2 G’ is a 3PC(A, A).

We assume w.l.o.g. that z; is adjacent to as. x; is adjacent to ag since, otherwise, there
is a 3PC(B, ay).

Assume that x; is not adjacent to a;. If x, has two nonadjacent neighbors in P, there
is a T-parachute TP(ag,as,a1,x1,2,). If x, has a unique neighbor z,,, in P}, there is a
T-parachute TP(ag,as,a1,x1,xn+1). If x, has exactly two neighbors in P;, say vy, z, and
they are adjacent, there is a 3PC(x,yz, as).

So z; is adjacent to ay, ay and az. If x, has a unique neighbor x,, ; in P, there is a
3PC(xya10a9,%, ). If 2, has two nonadjacent neighbors in P, there is a 3PC(z,a,a,,,) if
x,, is not adjacent to both z; and a; and a T-parachute T P(z1, a1, a9, z,,t) otherwise, where
t is the neighbor of z,, closest to b;. So, x,, has exactly two neighbors in P}, say y, 2, and
they are adjacent. Let y be the one that is closest to a; in P,. If y = a,, there is a proper
wheel with center a;. So y # a; and a) holds in this case.

Case 2.3 All the neighbors of z; are contained in a segment, say P; and all the neighbors
of x,, are contained in a segment, say Ps.

Note that the choice of P, and P, is done w.l.o.g. by assuming that we are not in Case 2.2.
We show that x; has exactly two neighbors and these two neighbors are adjacent. Assume z;
has exactly one neighbor y in P;. Since z, has a neighbor in P \ {b2}, there is a 3PC(A,y).

25



If 21 has two nonadjacent neighbors in P;, replace P; by the chordless a1b;-path containing
x1 and nodes of P; and let P/ = x9,...,2,. The proof of Case 1 shows that P’ has length
bigger than 2 and z9 now has x; as unique neighbor in P| and by the above argument, this
is impossible. So x; has exactly two neighbors in P, and they are adjacent. By symmetry,
x,, has exactly two neighbors in P, and they are adjacent. So a) holds in this case. O

Lemma 3.9 Let G be an even-signable WP-free graph, G' be an L-graph in G and P =
T1,...,%T, be a link of G'. Then

a) either G' U P is an L-graph, or
b) n =1 and x1 is either universal for G' or the twin of an endnode of a segment of G'.

Proof: Since P is a link of G’, 1, =, have neighbors zg, T,11 that are nonadjacent and in
distinct segments Sy, and Sy, ., of G'. Let S3 be any other segment of G’. By Lemma 3.4,
G’ contains an elementary L-graph G, with Sy, and S, , in distinct segments of G and
containing S3. So P is a link of G, and by Lemma 3.8, the statement holds when G’ = G;.

Case 1 n=1.

Assume x1 is a universal node for G and x; is not adjacent to node y of G’. Let C be
any hole of G;. By Lemma 3.5, G’ contains an elementary L-graph G5, containing C' and
segment S,. Since at least two nodes of C' are nonadjacent and in distinct segments of G,
x1 is a link of Go. Since (C,z1) is a universal wheel but 2 is not universal for G5, Lemma
3.8 is contradicted.

Assume z; is a link of G; and is adjacent to all nodes in distinct cliques K{, K of Gy,
not in the same segment of G; and to no other node of G;. (This happens both when z; is
a twin of an endnode of a segment of G| and when G; U {x;} is an L-graph). Let K, Ks be
the cliques of G/, that extend K7, K.

Assume 7 is adjacent to node y in G’ \ (K7 U K3) and let C' be a hole of G; containing
two nodes of K| and two nodes of K). By Lemma 3.5, G’ contains an elementary L-graph
G2, containing C' and segment Sy. Now x1 is a link of G, for 21 is adjacent to y, and no node
of C is in the same segment as y and at least one neighbor of x; in C' is nonadjacent to y.
Since (C, ;) is an L-wheel or a T-wheel and x; is adjacent to y, Lemma 3.8 is contradicted
in Gy.

Assume 7 is not adjacent to node z in Kj. Let C' be a hole containing two nodes of K]
and two nodes of K). By Lemma 3.5, G’ contains an elementary L-graph Gs, containing C
and segment S,. Since G2 contains at least three nodes of K, its restriction K7 to G is a
big clique of G2 and since x; is adjacent to two nodes in K7, two other nodes of C' and no
other node of Gg, 71 is a link of G, violating Lemma 3.8.

So z7 is adjacent to all nodes in K7 U K5 and is adjacent to no other node of G'. If K7,
K5 have a common node in G’, then x; is a twin of such a node and b) holds. Otherwise
G’ U{z1} is an L-graph and a) holds.

Case 2 n > 1.

Assume that node y of G’ is adjacent to an intermediate node z; of P. By Lemma 3.4, G’
contains an elementary graph Go containing Sy, where S;, and S, , are in distinct segments
of G2, So P is a link of G (the minimality of P follows from the fact that P is a link of
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G’). Since an intermediate node of P is adjacent to y, Lemma 3.8 is violated in G3. So no
intermediate node of P has a neighbor in G'.

Since P is a link of Gy, by Lemma 3.8, x1 and z, are adjacent to all the nodes in cliques
K1, K}, not in the same segment of Gy. Let K7, K5 be the cliques of G’ that extend K7, K.

Assume x; is adjacent to node y in G’ \ K;. By Lemma 3.4, G’ contains an elementary
L-graph G, containing S, where S;, and S, ., are in distinct segments of G2. So P is a
link of Gy, contradicting Lemma 3.8. So all the neighbors of z; in G’ are contained in K
and by symmetry, all the neighbors of z;,, in G’ are contained in K.

Assume 7 is not adjacent to node z in K;. By Lemma 3.4, G’ contains an elementary
L-graph G, containing S,, where S;; and S;, , are in distinct segments of G3. So P is a
link of G9, contradicting Lemma 3.8. So x; belongs to the extension of K7 and by symmetry,
x,, belongs to the extension of K, and a) holds in this case. O

3.4 A Proof of Theorem 1.16

A twin class of a graph G is a maximal subset of V(G) with the property that every pair of
nodes in it are twins. The twin classes of G partition V(G) into cliques. A restriction of G
is an induced subgraph H of GG obtained by keeping exactly one node in each twin class. All
the restrictions of G are obviously isomorphic graphs.

Let G be a graph. An induced subgraph G’ of G is an extended L-graph if any restriction
H of G’ is an L-graph and every twin class of G’ containing an intermediate node in a segment
of H contains no other node. A segment of G’ is a segment of one of its restrictions H together
with all the nodes in the twin classes of its endnodes. A path P in G\ G’ is a link of G if P
is a link of some restriction H of G'. By Lemma 3.9, it follows that if P is a link of G’, then
P is a link of all the restrictions of G.

Theorem 3.10 Let G be an even-signable WP-free graph, G' a node-mazximal extended L-
graph in G and P = x1,...,x, a link of G'. Then n = 1 and x1 is a universal node for
G'.

Proof: Follows by applying Lemma 3.9 to all the possible restrictions of G’ and the maximality
of G O

We can now prove Theorem 1.16.

Proof: Let G be an even-signable WP-free graph that contains an L-wheel or a 3PC(A, A)
as induced subgraph. Then G contains a node-maximal extended L-graph G’ and let U be
the set of nodes that are universal for G'.

Assume first that V(G) = V(G") U U. If U # 0, then G is disconnected. If U = () and at
least one twin class of G contains at least two nodes, then G contains a star cutset. Finally, if
U = () and every twin class of G contains a single node, G is the line graph of a triangle-free
graph.

Assume now G\ (V(G')UU) is nonempty and let C ..., C), be the connected component
of G\ (V(G'")UU). By Theorem 3.10 and Lemma 3.7, for every connected component Cj,
N(C;) NG’ is either contained in a clique of G’ or in a segment of G’ which is not atomic.
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Assume first that a component, say C7, has its neighbors in G’ contained in a clique K.
Then the removal of the nodes in K UU separates C; from G’ \ K and we have a star cutset.

Assume now that no component has its neighbors in G’ contained in a clique of G’ and
let K1, K3 be the two big cliques of G’ that contain the endnodes of the nonatomic segment
S containing the neighbors of C7. Let Ay, Ay be the subsets of K7, Ko that are the twin
classes of the endnodes of S and let By = K; \ Aj, By = Ky \ Ay. Since K, Ky are cliques
of an extended L-graph, A;, Ao are nonempty and disjoint, while By \ Bs, By \ B; are both
nonempty. If By N By is empty, we have an extended strong 2-join separating S U C] from
G'\ S, and if By N By is nonempty, we have a star cutset separating the same sets. O
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