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Abstract

Gomory mixed-integer cuts are one of the key components in Branch-and-Cut solvers for
mixed-integer linear programs. The textbook formula for generating these cuts is not used
directly in open-source and commercial software that work in finite precision: Additional
steps are performed to avoid the generation of invalid cuts due to the limited numerical
precision of the computations. This paper studies the impact of some of these steps on
the safety of Gomory mixed-integer cut generators. As the generation of invalid cuts is a
relatively rare event, the experimental design for this study is particularly important. We
propose an experimental setup that allows statistically significant comparisons of generators.
We also propose a parameter optimization algorithm and use it to find a Gomory mixed-
integer cut generator that is as safe as a benchmark cut generator from a commercial solver
even though it generates many more cuts.

1 Introduction

Gomory Mixed-Integer (GMI) cuts [15] are one of the key components in Branch-and-Cut
solvers for Mixed-Integer Linear Programs (MILPs) [5, 6]. The textbook formula for generating
these cuts is simple enough, but due to the limited numerical precision of the computations, all
open-source and commercial software that work in finite precision use additional steps to avoid
the generation of invalid cuts. This paper studies the usefulness and practical impact of these
safety-enhancing steps.

We perform statistical tests of several hypotheses related to these steps, in the context of a
reasonable use of a GMI cut generator over a large enough and relevant set of instances. The
use of the cut generator should be reasonable because we want to state properties that hold
true in a practical Branch-and-Cut setting. The set of instances should be large enough so that
we can draw statistically meaningful conclusions, and it should be relevant in the sense that it
should contain the kind of instances that are routinely solved in real-world applications. The
hypotheses that we want to test relate to the effectiveness of the safety-enhancing steps that
are typically applied by existing cut generators. In particular, we would like to identify which
steps are beneficial, irrelevant or harmful towards generating safe cuts.

In Section 2 we describe the cut safety-enhancing steps that we investigate. These steps are
selected based on inspection of the open-source codes of COIN-OR [10] and SCIP [1], as well
as discussion with developers of open-source and commercial solvers. They involve considering
the fractionality of the basic integer variable used to generate the cut, the ratio between the
largest and smallest absolute values of nonzero coefficients in the generated cut, the support of
the cut, zeroing-out small coefficients, the violation of the cut by the current LP solution, and
the relaxation of the right-hand side of the cut.



Numerical failures related to cut generation come in two flavors: generation of invalid cuts
and difficulties in the LP reoptimization process. In Section 3 we propose a framework called
Dive-and-Cut for the statistical analysis of such failures in cutting plane generators. Its basic
idea is to generate a number of feasible solutions SI for each test instance I, and to perform
the following experiment several times: randomly fix a number of integer variables in instance
I to get an instance IF such that solutions in a nonempty subset SF of SI are feasible for IF
(we call this a “dive”), generate several rounds of cuts for IF and report whether a solution
in SF violates at least one of the generated cuts. A different type of failure occurs when the
solver reports an infeasible LP but SF is actually nonempty. Another milder kind of failure
occurs when the computing time for solving the LP becomes prohibitively high due to numerical
difficulties.

Our investigation focuses on two measures of performance of the cut generators, the failure
rate (the fraction of dives where one of the numerical failures described in the previous paragraph
occurred) and the rejection rate (the fraction of cuts that did not pass the safety-enhancing steps
and were therefore discarded by the cut generator). We argue that a good generator should
have a low failure rate for a given rejection rate, while still generating strong cuts. Having a
low failure rate is an obvious goal, while parameterizing according to the rejection rate allows
to decouple cut generation from the cut selection process in Branch-and-Cut solvers. The
ultimate goal is to select a family of cuts that minimizes the computing time of Branch-and-
Cut algorithms. This is an extremely difficult question to answer for various reasons. One such
reason is that aggressive unsafe cut generators may look more attractive than safe ones based on
average computing time. An investigation of cut selection in the context of faster Branch-and-
Cut solvers only makes sense if one compares cut generators that have similar levels of safety.
The present paper focuses on the issue of cut safety. We plan to investigate cut selection for
strength in future work.

Section 4 presents the instances used in the tests and studies the impact of some parameters
of Dive-and-Cut on the number of failures (number of rounds of cutting, number of dives).
We show that by increasing these two parameters we can increase the power of the statistical
tests used to compare cut generators.

Section 5 reports on the variations in cut failure and cut rejection rates when modifying
a single safety-enhancing parameter. We find that steps using the fractionality of the basic
integer variable, the violation of the cut by the LP solution, or zeroing-out small coefficients
have a significant impact on the safety of the generated cuts. We also find that the relaxation
of the right-hand side should be done carefully. We observe a spike in invalid cuts when the
right-hand side is relaxed by a constant close to the tolerance used to test if a value is integer.

This sets up the stage for Section 6, where we seek to “optimize” over all the parameters
used in the safety-enhancing step. Our goal is to obtain a GMI cut generator with the following
characteristics: its failure rate should be the same as or lower than that of the GMI cut generator
of a commercial solver (we chose Cplex as our benchmark) and its rejection rate should be lowest
possible, subject to this constraint. We describe a black-box optimization algorithm to achieve
this goal. Note that this algorithm does not consider the strength of the cuts when optimizing
the safety-enhancing parameters. (We however verify in Section 7 that our best generators are
not significantly weaker than generators typically used in practice.) Our philosophy is that
solvers should pick good cuts in a second stage, among cuts that are deemed safe in a first
stage.

In this paper, we focus on the first stage, which is to reject unsafe cuts. The cut generators we
consider have twelve parameters and optimizing over all of them simultaneously would require
an excessive amount of CPU time. We thus first use regression techniques to identify a set
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of six most influential parameters over which the optimization is performed. The remaining
parameters are considered afterwards. We are able to find GMI cut generators that are as safe
as the Cplex cut generator and that have a rejection rate around 40%.

Section 7 validates the results of Section 6. We use a different set of test instances to
compare five GMI cut generators obtained by our optimization algorithm to six cut generators
from commercial or open-source solvers. The conclusions are that our generators are consistently
safer than the cut generators (commercial or open-source) that have a similar rejection rate, and
they accept many more cuts than the only generator (commercial) that has a similar safety. In
addition, we observe that the gap closed at the root using any of our generators is comparable
to the gap closed by usual generators. This gives hope that coupling an efficient cut selection
procedure with the safety-enhancing procedures described in this paper could yield safe and
strong cut generators.

Finally, Section 8 concludes the paper summarizing our findings and providing a set of
suggested parameter values for the generation of safe cuts.

1.1 Preliminaries

Consider a MILP in canonical form

min c⊤x
Ax ≥ b
x ∈ Rn

+

xj ∈ Z for all j ∈ NI ,

 (MILP)

where c ∈ Qn, b ∈ Qm, A ∈ Qm×n and NI ⊂ {1, . . . , n}. Lower (resp. upper) bounds on x are
denoted by xL (resp. xU ) and are included in Ax ≥ b. Rows of A are denoted by ai, i = 1, . . . ,m.
For a positive integer k, we denote by [k] the set {1, . . . , k} and by 0k the all-zero k-vector.
The nearest integer to z ∈ R is denoted by ⌊z⌉. (MILP) can be expressed in standard form by
defining Â = (A, −I), ĉ⊤ = (c⊤, 0m

⊤) and appending m variables to the vector x. We assume
that the first n components of x are the original variables. Variables numbered n+ 1 to n+m
are called surplus variables. We thus obtain

min ĉ⊤x

Âx = b
x ∈ Rn+m

+

xj ∈ Z for all j ∈ NI .

 (MILPs)

The LP relaxation of (MILPs) is the linear program obtained by dropping the integrality con-
straints, and is denoted by (LP). Let B ⊂ [n + m] be an optimal basis of (LP), and let
J = [n + m] r B be the set of nonbasic columns. Let BI , JI and JC be the sets of integer
basic variables, integer nonbasic variables, and continuous nonbasic variables respectively. The
simplex tableau associated with B is given by

xi = x̄i −
∑
j∈J

āijxj ∀i ∈ B. (1)
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Choose i ∈ BI such that xi ̸∈ Z. Define f0 := x̄i − ⌊x̄i⌋ and fj := āij − ⌊āij⌋ for all j ∈ JI . The
GMI cut obtained from the row where xi is basic is∑

j∈JI :fj≤f0

fjxj +
∑

j∈JI :fj>f0

f0(1− fj)

1− f0
xj +

∑
j∈JC :āij≥0

āijxj −
∑

j∈JC :āij<0

f0āij
1− f0

xj ≥ f0. (2)

The GMI cut (2) was introduced in Gomory’s seminal paper [15] on mixed-integer linear pro-
grams. The cut (2) is generated from the problem in standard form (MILPs), but virtually
all Branch-and-Cut codes require the cut to be expressed in the space of the original variables
before adding it to (LP). Therefore, surplus variables with nonzero cut coefficients must be
substituted by their expression in terms of the original variables. When expressed in the space
of original variables, the GMI cut is often called MIR inequality. In the following, for simplicity
this cutting plane will be written as ∑

j∈[n]

αjxj ≥ α0, (3)

or, if we need its expression in the n+m space, as∑
j∈[n+m]

α̂jxj ≥ α̂0. (4)

Software using finite precision arithmetic works with tolerances for constraint violation. For
MILPs, a natural choice is to use a tolerance for considering a number to be integer (ϵint), a
tolerance for absolute violation of a constraint (ϵabs), and a tolerance for relative violation of a
constraint (ϵrel). Available commercial solvers typically use ϵrel =∞. Given nonnegative values
for ϵint, ϵabs, and ϵrel, we say that a point x∗ is (ϵabs, ϵrel, ϵint)-feasible for (MILP) if

(i) ∀i ∈ NI , x
∗
i − ⌊x∗i ⌉ ≤ ϵint,

(ii) ∀i ∈ [m], bi − aix∗ ≤ ϵabs,

(iii) ∃x′ : Ax′ ≥ b, x′ ≥ 0, ∥x∗ − x′∥ ≤ ϵrel.

Point (iii) above is stronger than simply imposing a relative tolerance for individual constraints:
∀i ∈ [m], (bi − aix∗)/∥ai∥2 ≤ ϵrel. The stronger condition is motivated by the following simple
example. Suppose x∗ satisfies at equality the relative feasibility tolerance for two rows of
(MILP), say rows 1 and 2. Thus (bi − aix∗)/∥ai∥2 = ϵrel for i = 1, 2. Now consider the
constraint (a1 + a2)x ≥ b1 + b2. It is redundant for (LP), but it is not satisfied by x∗ according
to the relative feasibility tolerance unless a1 and a2 are parallel. Indeed,

(b1 + b2)− (a1 + a2)x∗

∥a1 + a2∥2
=

ϵrel(∥a1∥2 + ∥a2∥2)
∥a1 + a2∥2

≥ ϵrel

and the inequality is strict unless a1 and a2 are parallel. In other words, even though the
Euclidean distance between x∗ and each violated constraint is at most ϵrel, the distance between
x∗ and the closest point in the feasible set of the LP could be much larger than ϵrel. In this
situation, a cutting plane that cuts off x∗ should not be marked as invalid. Therefore we do not
want x∗ in our set of feasible solutions.

A cut generator is an algorithm whose input is a simplex tableau for the LP relaxation of an
MILP and whose output is a set of cuts. Safety-enhancing steps are part of the cut generator.
A cut generator can produce failures of the following types.
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Type 1: A cutting plane that cuts off a known integral feasible solution is generated.

Type 2: The linear relaxation becomes infeasible after the addition of the generated cutting
planes, but an integral feasible solution is known.

Type 3: A time limit for cut generation and LP resolve is hit.

Failures of Type 1 and 2 depend on the precision of the machine and of the computations. A
Type 3 failure depends on the time limit that is set, and can be seen as less severe than failures
of Type 1 and 2. However, if the time limit is sufficiently large, a Type 3 failure is still a major
defect of the cut generator.

Ideally, no failure should occur when the cut generator is used in a Branch-and-Cut algo-
rithm. However, practitioners in integer programming know that numerical problems are not
uncommon, and if the choice of the cut generation parameters is not careful, failures of the
three types listed above can happen [23]. To decrease the occurrence of failures, several cut
safety-enhancing steps have been devised empirically. Some of these steps modify the cut, while
others are numerical checks that result in the acceptance or rejection of the cut. Rejected cuts
are simply discarded.

1.2 Related work

A step in the direction of testing safety of cutting plane generators is taken in [23]. The paper
proposes a methodology for comparing the strength of cut generators. Safety is a fundamental
issue in this context, since only cut generators with a similar safety can be compared on equal
ground with respect to strength (otherwise, the comparison would favor “unsafe” but more
aggressive cut generators). [23] provides experimental evidence that existing cut generators in
COIN-OR Cgl [10] may run into numerical problems on seemingly innocuous instances.

A Branch-and-Bound solver that relies on rational arithmetic and thus is not affected by
the numerical problems mentioned above, is described in [14]. A combination of the rational LP
solver [4] with the Branch-and-Cut code SCIP [1] is in progress. The idea is to use finite precision
arithmetic for the majority of the computations, and switch to (slower) rational arithmetic only
for those operations that would invalidate optimality of the result if carried out in a non-exact
fashion (such as pruning based on dual bounds). More details can be found in [13]. Note
however that the implementations described in [13, 14] do not include cutting planes.

The generation of numerically safe GMI cuts has been investigated in [24] when all the
variables are bounded, and in [12] in general. These safe cuts are generated in floating-point
arithmetic using a clever rounding scheme and they are guaranteed to be satisfied by all feasible
solutions of the MILP. However, [12] (p. 641) stresses that these cuts are guaranteed to be valid
only “when computations to evaluate the inequality are performed in infinite precision.” They
are even more explicit in their conclusion [12] (p. 648):

This does not mean, however, that if we add these cuts instead of unsafe Gomory
cuts in current floating-point-based MIP solvers that we are guaranteed (or even
have a better chance) to obtain the correct optimal solution. For example, a solver
could incorrectly assert that a solution to the MIP problem violates a safe Gomory
cut if it evaluated the cut in finite precision arithmetic.

The generation of safe GMI cuts in finite precision arithmetic is particularly useful when
using a hybrid solver that performs most computations in finite precision for speed but switches
to infinite precision once in a while to guarantee correctness. However, when using a finite
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precision state-of-the-art solver, we observed no significant difference in the safety of the GMI
cuts when turning on or off the safe rounding scheme in the code of [12]. Specifically, out of
5,240 experiments using the method of [23] on 29 MIPLIB3 instances, we observed 1,773 overall
failures with the safe generator of [12] (38 failures of Type 1, 148 failures of Type 2 and the
remaining ones of Type 3, as discussed in the previous section) and 1,737 failures when safe
rounding was turned off (19 failures of Type 1, 128 failures of Type 2 and the rest of Type 3).
The differences are not statistically significant but, clearly, the safe rounding scheme has little
impact when used with a finite precision solver. This is explained by the fact that the rounding
scheme of [12] typically affects the 15th significant digit of the coefficients while the error in
computing the left-hand-side of a GMI cut is often orders of magnitude greater, say 10−9 or
larger.

2 Cut generation and safety-enhancing parameters

Generating GMI cuts using finite precision computations involves three basic nonegative pa-
rameters.

(i) ZERO: Any number z ∈ R such that |z| ≤ ZERO is replaced by zero;

(ii) EPS, EPS REL: Any two numbers z, w ∈ R such that |z − w| ≤ max{EPS, EPS REL ·
max{|z|, |w|}} are considered to be equal.

The choice EPS REL = 0 is common in practice.
Two broad classes of cut safety-enhancing procedures are cut modifications (modifying the

coefficients or the right-hand side of the cut) and numerical checks (performing checks on the
cut in order to either accept or reject it). We now describe the safety-enhancing procedures
that we consider in this paper.

2.1 Cut modification

In a typical GMI cut generator, each cut computed by the Gomory formula (2) is modified by
up to three procedures before being added to (LP).

(i) Coefficient Removal: First, very small cut coefficients for surplus variables are re-
moved without adjusting the right-hand side. Then the cut is expressed in the original
space. Finally, small cut coefficients are removed, possibly adjusting the right-hand side
of the cut to ensure its validity.

(ii) Right-hand Side Relaxation: The right-hand side of the cutting plane is relaxed to
generate a safer cut.

(iii) Scaling: The coefficients and right-hand side of the cut are scaled by a positive number.

Coefficient Removal is applied by all open-source cut generators in Cgl [10] and SCIP [1].
The purpose of removing cut coefficients for surplus variables before substituting their expression
in terms of the original variables is to save computing time. Right-hand Side Relaxation
and Scaling procedures are not always employed. Scaling can be performed in various ways
that may significantly differ. For example, one can scale to obtain the largest cut coefficient
equal to 1 or scale to obtain integral cut coefficients. Note that Scaling affects the absolute
violation of the cut at a point x̄, i.e. the value of α0−αx̄. Because there is no standard Scaling
procedure in the cut generators that we examined, and because we have computational evidence
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that Scaling is not beneficial in our framework (remember that we use a relative feasibility
tolerance), we postpone an analysis of Scaling until Section 6.6. For now we concentrate on
the first two of the above modification procedures. They require the following parameters.

(i) EPS ELIM: For j ∈ {n + 1, . . . , n +m}, cut coefficients α̂j such that |α̂j | ≤ EPS ELIM are
set to zero, without substituting the corresponding surplus variable with its expression in
terms of the original variables;

(ii) LUB: For j ∈ [n], a variable xj with xLj = β or xUj = β for some β such that LUB ≤ |β| <∞
is considered having a large bound. Define L as the set of such variables;

(iii) EPS COEFF: For j ∈ [n] \L, cut coefficients αj such that |αj | ≤ EPS COEFF, are set to zero,
adjusting the right-hand side of the cut as follows. If αj > 0 (resp. αj < 0), the right-hand
side α0 becomes α0 − αjx

U
j (resp. α0 − αjx

L
j ) unless x

U
j =∞ (resp. xLj = −∞), in which

case the cut is discarded;

(iv) EPS COEFF LUB: For j ∈ [n] ∩ L, cut coefficients αj such that |αj | ≤ EPS COEFF LUB are
set to zero and no adjustment of the right-hand side occurs; typically EPS COEFF LUB is
much smaller than EPS COEFF;

(v) EPS RELAX ABS: The cut right-hand side α0 is relaxed to α0 − RELAX RHS ABS;

(vi) EPS RELAX REL: The cut right-hand side α0 is relaxed to α0 − |α0| · RELAX RHS REL.

2.2 Numerical checks

All generated cutting planes undergo a sequence of checks aimed at deciding whether or not
they should be added to (LP). These checks test the numerical properties of the cuts, as well as
their effectiveness. The support of a cut is the set of all variables whose coefficient is nonzero.
In a typical cut generator, the following checks are performed.

(i) Fractionality Check: A cut is discarded (rather, not generated), if the value of the
corresponding integer basic variable is too close to an integer value;

(ii) Violation Check: A cut is discarded if it does not cut off the optimal solution to (LP)
by at least a given amount;

(iii) Support Check: A cut is discarded if the cardinality of its support is too large;

(iv) Ratio Check: A cut is discarded if the ratio between the largest and smallest absolute
values of the nonzero coefficients is too large. In the literature, this ratio is often referred
to as the Dynamism of the cut;

(v) Scaling Check: A cut is discarded if it is badly scaled.

The Scaling Check is not regulated by a single parameter. For example, a cut might be
discarded if its ℓ2-norm does not fall within a given range. A study of scaling is postponed until
Section 6.6. The other four checks require the following parameters. Let x̄ denote the current
basic solution as defined in (1).

(i) AWAY: The cut generated from the tableau row where xi is basic is discarded if |x̄i−⌊x̄i⌉| <
AWAY;

(ii) MIN VIOL: The cut is discarded if α0 −
∑

j∈[n] αj x̄j < max{1, |α0|} · MIN VIOL;
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(iii) MAX SUPP ABS, MAX SUPP REL: The cut is discarded if the support of α is larger than
MAX SUPP ABS+ n · MAX SUPP REL;

(iv) MAX DYN: The cut is discarded if max{|αj | : j ∈ [n]} > MAX DYN·min{|αj | : |αj | > 0, j ∈ [n]}
and L ∩ {j : |αj | > 0} = ∅;

(v) MAX DYN LUB: The cut is discarded if max{|αj | : j ∈ [n]} > MAX DYN LUB ·min{|αj | : |αj | >
0, j ∈ [n]} and L ∩ {j : |αj | > 0} ̸= ∅.

Observe that any of the cut modification and numerical check procedures can be disabled by set-
ting the corresponding parameter to an appropriate value. For example, using MAX SUPP ABS = n
implies that no Support Check is performed.

3 Dive-and-Cut

In this section we propose a method for testing the safety of cut generators. It assumes that a
set of problem instances is available. For each instance a preliminary Solution-Generation step
is applied. The goal of this step is the generation of many feasible (or almost feasible) solutions.

Once the Solution-Generation step has been completed, the testing phase for an instance
amounts to diving randomly by fixing a number of integer variables, and then generating rounds
of cuts. In the testing phase, standard features of the LP solver such as presolving are turned
on. The main task is to solve a sequence of LPs, to generate the corresponding GMI cuts and
to check their validity using the known feasible (or almost feasible) solutions.

This scheme is similar to the method RandomDives proposed in [23], in the sense that
the work horse is a large number of random dives to be able to perform meaningful statistical
tests. However, Dive-and-cut improves over RandomDives on the three criteria mentioned
in Section 1 (reasonable use of the generator, large and relevant set of instances). In addition,
Dive-and-Cut is usually faster than RandomDives.

3.1 Solution-Generation phase

Testing invalid cuts requires the knowledge of feasible solutions. Branch-and-Cut solvers typ-
ically accept (ϵabs,∞, ϵint)-feasible solutions with positive and finite values for ϵabs and ϵint.
Suppose that for problem (MILP) we have an (ϵabs,∞, ϵint)-feasible solution x̃, and there exists
at least one row ai such that bi− aix̃ > 0. Thus, we can find λ ∈ Rm

+ such that λ⊤(b−Ax̃) > ϵ′

for arbitrary ϵ′ > 0. In other words, we can find a valid inequality αx ≥ α0 for the system
Ax ≥ b, with α = λ⊤A and α0 = λ⊤b, that is violated by x̃ by an arbitrary amount. It follows
that we should be careful when choosing the solutions that are used for testing the validity
of the cuts. On the one hand, using slightly infeasible solutions may lead to mislabeling cuts
as invalid. On the other hand, commercial MILP solvers typically return slightly infeasible
solutions that are often acceptable for practical purposes, therefore cutting off such a solution
can reasonably be considered a failure of the cut generator.

We use algorithm GenerateSolutions given in Appendix A to generate (ϵabs, ϵrel, 0)-
feasible solutions for an instance, with positive and finite values for ϵabs and ϵrel. It applies
a Branch-and-Cut solver and acts whenever the solver discovers an integer solution. First,
integer variables are set to integer values and this updated solution is checked for (ϵabs, ϵint, 0)-
feasibility. If it satisfies both the absolute violation tolerance ϵabs and the relative violation
tolerance ϵrel for each constraint, a rational solver is used to find a feasible solution close to the
updated solution, and this solution is used to check whether condition (iii) in the definition of
(ϵabs, ϵrel, ϵint)-feasibility is also satisfied. Details are in Appendix A.
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3.2 Testing phase

In this section we assume that for each instance in our test set, a collection of feasible solutions
is available. These solutions will be used to detect invalid cuts. A formal description of the
method that we propose is given in Algorithm 1.

Algorithm 1 Dive-and-Cut.

Input: Problem P = (A, b, c), set of solutions S, maximum gap threshold T , upper bound
U , number of rounds ρ, tolerances ϵabs, ϵrel ≥ 0, time limit for a dive
Output: A failure flag: 1 for an invalid cut, 2 for an infeasible LP, 3 for exceeding the time
limit, 0 for no failure.
Let F ← ∅
Randomly choose x∗ ∈ S
Randomly choose t ∈ [0, T ]
Compute x̄ = argmin{c⊤x|Ax ≥ b, x ≥ 0}
Initialize x̄′ ← x̄
while (c⊤(x̄′ − x̄) < t · (U − c⊤x̄)) do

Randomly choose j ∈ {i ∈ NI \ F}
Append the constraint xj = x∗j to (A, b)
Let F ← F ∪ {j}
Compute x̄′ = argmin{c⊤x|Ax ≥ b, x ≥ 0}

Compute S(x∗, F ) = {x ∈ S|xi = x∗i ∀i ∈ F}
for 1, . . . , ρ do

Generate cuts αix ≥ αi
0, i = 1 . . . , h and append to (A, b)

Resolve min{c⊤x|Ax ≥ b, x ≥ 0}
if (time limit is hit) then

return failure← 3
else if (LP is infeasible) then

return failure← 2
else if (∃x̃ ∈ S(x∗, F ) : ((maxi∈[h]{αi

0−αix̃} > ϵabs)∨ (maxi∈[h]{(αi
0−αix̃)/∥αi∥} > ϵrel)))

then
return failure← 1

Perform cut management
return failure← 0

We call this algorithm Dive-and-Cut. It starts by diving towards a feasible solution x∗

chosen at random among the available solutions. This is achieved by selecting uniformly at
random a value t between 0 and T (we use T = 80% in our experiments) and fixing randomly
chosen integer variables to their value in x∗ until a fraction t of the initial gap is closed. The gap
is computed with respect to a given upper bound U . In this paper we set U to the value of the
best solution returned by GenerateSolutions (in the vast majority of cases, this is the same
as the value of the best known solution for the instance, see Appendix A.2). This simulates the
generation of a node of a hypothetical Branch-and-Cut tree. Once at this node, Dive-and-Cut
solves the LP, generates a round of GMI cuts from the rows of the optimal tableau, adds these
cuts to the formulation, resolves the LP, and repeats this process generating ρ rounds of cuts.
If we hit the time limit during cut generation, or the LP is infeasible, or we cut off any feasible
solution, the algorithm returns a failure. Otherwise, it returns that no failure occurred. Note
that we only test against the feasible solutions in the set S that have the same value as x∗ on
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the variables that have been fixed1.
This method is designed to represent a reasonable use of a cut generator. In the majority

of Branch-and-Cut solvers, cutting planes are mostly generated at the root node and cut man-
agement procedures are used. In Dive-and-Cut the node obtained after the dive mimics a
root node. Dive-and-Cut involves several random decisions, therefore the algorithm can be
applied as many times as required to obtain statistically significant results.

4 Empirical testing: Preliminaries

In this section we describe the framework for the empirical testing of GMI cut generators
conducted using Dive-and-Cut.

4.1 Parameters and implementation

We list here the parameters and implementation features used throughout the computational
experiments. ZERO is set to 10−20, EPS and EPS REL are set to 10−12. A number α is considered
integer valued if |α − ⌊α⌉| ≤ max{10−9, 10−15 · |α|}. The absolute feasibility tolerance ϵabs is
set to 10−9, the relative feasibility tolerance ϵrel is set to 10−9. The number ρ of rounds of cut
generation is set to 30, unless otherwise stated (see discussion in Section 4.4).

Throughout our code except in the cut generator itself, the computation of all sums of a
sequence of numbers (e.g., dot product, norm) is carried out with the compensated summation
algorithm [20] to compute the left-hand side of inequalities. (Compensated summation ensures
that the numerical error is independent of the number of additions.) In the GMI cut generator,
compensated summation is not used, as it is not standard practice in commercial and open-
source Branch-and-Cut solvers. The GMI cut generator recomputes the simplex tableau from
scratch, using the basis information, instead of obtaining it directly from the LP solver. We
experimented with using the tableau provided by Cplex, but in our framework we did not detect
any difference in safety of the generated cuts.

The algorithms discussed in this paper are implemented in C++ within the COIN-OR frame-
work. We use several functions available in COIN-OR Cbc 2.7 [8]. The GMI cut generator is
implemented as a CglCutGenerator, following the guidelines of Cgl [10]. The LP solver of
choice is IBM ILOG Cplex 12.2 [19].

A small part of the experiments required a manageable amount of time on a single machine:
all experiments discussed in Sections 4.4, 6.1, 6.6 and 7. These tests were executed on a machine
equipped with an AMD Opteron 4176 HE processor clocked at 2.4GHz and 48GB RAM, running
Linux. Because the required CPU time was manageable, we performed 300 dives with a time
limit of 600 seconds per dive. In the rest of the paper, we refer to this setup as the single-machine
setup.

Due to the huge amount of processing time required, most of the experiments were run
in parallel on the Condor [22] grid at the University of Wisconsin-Madison: all experiments
discussed in Sections 4.2, 5, 6.3, 6.4, and 6.5. Compared to the single machine setup, these
tests use only 150 dives with a time limit of 300 seconds per dive, to reduce computing time.
In the rest of the paper we refer to this setup as the Condor setup. All machines running
Linux in the Condor pool were candidates for executing the experiments. For this reason, our
code is compiled to run on a generic x86 architecture. Since we use different machines, some
variation on the results of the computations across machines should be expected. A preliminary

1This is not necessary if the cuts being tested can be generated independently of the bounds on the variables,
or are lifted to be globally valid.
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computational evaluation revealed that this is not a major problem, as the differences recorded
by running the same experiment several times were not statistically significant.

4.2 Instance selection and cut management

In order to have a large and diverse set of instances to test the cut generators, we built an initial
test set containing all instances from MIPLIB3 [7], MIPLIB2003 [2], and the Benchmark set of
MIPLIB2010 [21] beta (downloaded March 2011) for a total of 169 instances.

For each instance in the set, we applied Cplex’s Branch-and-Cut and GenerateSolutions
in order to generate the set of feasible solutions (see Appendix A). As GenerateSolutions
fails to generate any feasible solution for ten of the instances, we are left with 159 instances.

Since running experiments on instances that do not generate failures is useless in the present
context, we keep only instances for which a crude GMI cut generator called CgBase gener-
ates some failures. CgBase is the most basic cut generator that can be designed given our
parameters, as it accepts all cuts generated from rows whose basic variable has a fractionality
exceeding the integrality tolerance. Its parameterization is given in Table 1.

Parameter Value Parameter Value Parameter Value

AWAY 10−9 MAX DYN ∞ EPS COEFF 0

MIN VIOL −∞ MAX DYN LUB ∞ EPS COEFF LUB 0

MAX SUPP ABS ∞ EPS ELIM 0 EPS RELAX ABS 0

MAX SUPP REL ∞ LUB ∞ EPS RELAX REL 0

Table 1: Parameters defining the cut generator CgBase.

The test runs consist in applying Dive-and-Cut in the Condor setup with the tolerances
described in Section 4.1. Four cut management procedures are tested. We say that a generated
cut is inactive in an optimal solution of (LP) if its dual variable has a value smaller than 10−5.
The four cut management procedures that we considered are to remove all cuts that are inactive
for k consecutive rounds for k = 1, 2, 3 and k =∞.

We also allow for an early stopping criterion: if more than 20 failures of Type 3 are detected
on an instance with a given cut management procedure, the execution of Dive-and-Cut is
stopped. Overall, the experiment required more than 3,000 hours of CPU time. All instances
on which no failures of Type 1 or 2 occurred are removed.

The test runs show that the number of failures decreases if we remove inactive cuts more
aggressively. At the same time, CPU time decreases, which is expected. Experiments where cuts
are never removed from the LP turn out to be very time-consuming, with a significant number
of Type 3 failures. The number of recorded failures for the four cut management procedures
are given in Table 2.

It can be seen from Table 2 that the number of failures significantly increases when we do
not remove all inactive cuts immediately. On the other hand, there is little difference between
k = 2, 3 and∞. Indeed, the total number of failures is relatively stable for these three values of
k. The fact that the number of Type 1 and 2 failures decreases between k = 3 and k =∞ can
be explained by observing that some of the Type 3 failures might generate failures of Type 1
or 2, if given more time. Furthermore, more instances time out, hence we perform fewer dives
overall because of the early stopping criterion. Since we are interested in producing a large
number of failures as quickly as possible, we will use the cut management procedure with k = 2
in the remainder of the paper.
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Failures
k T. 1 T. 2 T. 3 Tot.

1 300 63 150 513
2 436 262 331 1029
3 391 279 353 1023
∞ 353 238 518 1109

Table 2: Number of failures on the full test set, minus instances on which no failures of Type 1
or 2 were recorded with CgBase. This test set comprises 74 instances. The value of k is the
number of consecutive rounds of inactivity after which cuts are removed from the LP.

The final modification to the test set consists in removing the instances taking too much
time with k = 2. We remove instances where more than 10 failures of Type 3 are recorded or
such that 150 dives take more than 5 hours. We are left with a set of 51 instances that we call
Failure Set, see Appendix A.2.

4.3 Statistical Tests

In this section, we briefly cover the application of statistical tests to the analysis of results of
c ≥ 2 algorithms on r instances. In the usual presentation of these tests in statistics text-
books, algorithms are referred to as “treatments” and instances are referred to as “blocks” or
“subjects”. For a complete presentation of these tests, see [11, 27] or any reference statistics
book.

The Friedman test used in the analysis of our results is a non-parametric test, i.e., a test
that does not assume any form for the distribution of the population data. The test assumes
that a null hypothesis is true and gives the probability (the p-value) of obtaining a test statistic
at least as extreme as the one observed. The p-value is then compared to a given α value (we
use α = 0.05 in this paper) for a test with significance (1 − α). If the p-value is smaller than
α, the null hypothesis is rejected, as the observed results have a low probability of occurring if
the null hypothesis were true.

Friedman test:

(i) Application: 1) each instance is solved by all c algorithms; 2) the outcome of using an
algorithm on an instance is a real value called the performance of the algorithm on that
instance.

(ii) Null hypothesis: The c algorithms have similar performances; Alternative hypothesis:
There is a difference in performance between some of the algorithms.

(iii) Assumptions: 1) The set of r instances is a random sample of the population; 2) The
r c-variate random variables are mutually independent; 3) The outcome is a continuous
random variable.

We use the Iman-Davenport’s variant of the Friedman test, known to be more accurate than
the original version of the test [11]. Note that the Friedman test is based only on the ranking of
the performance of the algorithms on each instance. It does not take into account the magnitude
of the differences in performance.
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When we say “we apply a Friedman test on the failure rate”, the performance of a cut
generator on an instance is the average failure rate over all dives on that instance. The null
hypothesis is that the cut generators are indistinguishable in terms of their failure rate.

Similarly, when “we apply a Friedman test on the rejection rate” the performance of a cut
generator on an instance is the average rejection rate over all dives on that instance. In this case,
the null hypothesis is that the cut generators are indistinguishable in terms of their rejection
rate.

When the Friedman test rejects the null hypothesis, an additional statistic can be used to
test if algorithm A has a better performance than algorithm B, for each pairs A,B. The result
of all pairwise comparisons is not always a total order, as transitivity is not guaranteed.

We use a 2-dimensional table for displaying the result of pairwise comparisons. Rows and
columns of the table corresponds to the tested algorithms. Entry in cell in row i and column j
is a “+” sign (resp. “−” sign) if the algorithm in row i has larger (resp. smaller) performance
value than the one in column j at the given significance level. A “=” means that no difference
could be detected at the given significance level. All comparisons in this paper are carried out
at a significance level of 95%.

4.4 Number of rounds and number of dives

The number ρ of rounds of cuts to be generated is one of the key decisions in cutting plane
algorithms. In this section we show that this choice does not affect the conclusions that can be
drawn by applying Dive-and-Cut, in the sense that increasing ρ simply increases the power
of the statistical tests that we use but does not change the safety rankings of cut generators.
The same is true for the number of dives. We provide some details on our study of failures as
a function of ρ.

The data is obtained by applying Dive-and-Cut in the single-machine setup on the 51
instances of the Failure Set with the cut generator CgBase (see Table 1). For each type of
failure, we plot in Figure 1 the points (r, f) where f is the number of failures that occurred
up to round r. Similar graphs are obtained with other cut generators, therefore we only report
results for CgBase.

An interesting fact that can be observed in Figure 1 is that the number of Type 1 failures is
a concave function of ρ and the number of failures of Type 2 and 3 increases almost linearly with
ρ. This is surprising, as we expected very few failures in the first few rounds and a super-linear
increase for larger values of ρ. The importance of this finding lies in the fact that we can increase
the number of rounds to increase the number of failures without putting an unreasonable stress
on the generators. This helps in detecting differences between otherwise indistinguishable cut
generators, without severely affecting the ranking of the generators. We verified this claim by
comparing the safety of a set of cut generators for ρ = 5, 10, 20, and 30 using a Friedman test
on the failure rate. Some differences among the cut generators that are detected for ρ ≥ 20 are
not detected for ρ = 5, 10.

To summarize, the number of rounds of cut generation and the number of dives have a
direct influence on the detection power of our tests. By increasing those two parameters, we
can magnify the differences between cut generators, at the expense of requiring more computing
time.
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Figure 1: Number of failures depending on the value of ρ (x axis).

5 Empirical testing: Parameter ranges

In this section we discuss one-at-a-time changes in the cut generation parameters. The base
cut generator in this section is CgBase described in Table 1. All experiments were run in the
Condor setup.

For each parameter listed in Sections 2.1 and 2.2, we perform several tests over the range of
possible values, recording the number of failures and the average rejection rate as the parameter
value changes. This information is used in Section 6.3 to determine the initial parameter ranges
for the optimization.

For the sake of brevity, instead of reporting extensive statistical tests for each parameter
value, we simply graph the number of failures and cut rejection rate for a range of possible
values of the parameter.

5.1 Variables with large bounds

The LUB parameter theoretically takes value in [0,∞]. There are only 5 instances in Failure
Set for which LUB ≥ 104 yields a different set L of variables with a large bound compared
to LUB = 103: bell4a (|L| decreases from 92 to 62), blend2 (|L| decreases from 90 to 88),
maxgasflow (|L| decreases from 4920 to 4912) noswot (|L| decreases from 53 to 28), roll3000
(|L| decreases from 244 to 6 for LUB = 104, 2 for LUB > 104). For the remaining instances, any
value of LUB ≥ 103 yields the same set of variables with a large bound.

The value of the LUB parameter affects both MAX DYN LUB and EPS COEFF LUB and these
parameters are hard to decouple. Therefore we do not analyze them in this section where the
focus is on one-at-a-time changes.
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Figure 2: Number of failures and cut rejection rate for cut generators with different values of
AWAY. AWAY is set to 10k, where k is the value on the x axis.

5.2 Numerical check parameters

In this section we analyze the effect of varying separately each parameter given in Section 2.2.
In each case, we plot the number of failures and the rejection rate.

5.2.1 Fractionality of the right-hand side

The AWAY parameter takes its value in [0, 0.5]. Since the integrality tolerance is 10−9, we use a
lower bound of 10−9 for AWAY. We tested the values AWAY = 10k for k = −9, . . . ,−1. Smaller
values of AWAY lead to generating more cuts and more failures.

Figure 2 graphs the number of failures and percentage of rejected cuts as a function of k. It
shows that generating cuts with small AWAY is extremely risky and leads to many failures. Since
a small value of AWAY allows for the generation of cuts with large coefficient ratios, the generated
unsafe cuts could possibly be discarded through Ratio Check, but such interactions will only
be considered later through the optimization algorithm of Section 6.2. By increasing AWAY, a
much safer cut generator can be obtained, while still rejecting very few cuts. The rejection rate
starts increasing to non-negligible levels only for AWAY > 10−5.

5.2.2 Ratio test

The MAX DYN parameter used in the ratio test takes value in [0,∞]. We tested the values
MAX DYN = 10k for k = 2, 4, . . . , 30.

Figure 3 shows that the cut rejection rate decreases at a low rate while k increase from 2
to 16, decreases sharply when k increases from 16 to 26, and is almost 0 when k is larger than
26. This implies that most of the generated cuts when AWAY = 10−9 have very poor numerical
properties. We suspect that this happens especially in later rounds. By relying on Ratio
Check only, halving the number of Type 1 and 2 failures comes at the cost of rejecting more
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Figure 3: Number of failures and cut rejection rate for cut generators with different values of
MAX DYN. MAX DYN is set to 10k, where k is the value on the x axis.

than half of the generated cuts. If we only accept cuts with MAX DYN = 102, just 10 failures
are recorded overall, but almost two thirds of the cuts are rejected. Interestingly, for k < 22
essentially no Type 3 failures are recorded. This suggests that adding cuts with large coefficient
ratios makes the LP solution process significantly more time-consuming.

5.2.3 Violation

The MIN VIOL parameter theoretically takes its value in [0, 1], but due to errors in the finite
precision computations, applying Violation Check even with MIN VIOL = 0 could reject
some cutting planes. We tested the values MIN VIOL = 10k, k = −10, . . . ,−1, and MIN VIOL = 0
(which is reported as k = −inf in the figure for sake of simplicity).

Figure 4 shows that even small values of MIN VIOL are surprisingly effective in reducing the
number of failures. The number of Type 1 and 2 failures can be reduced by 50% by rejecting
less than 2% of the generated cuts. For k > −6, the fraction of rejected cuts begins to rise
sharply.

5.2.4 Maximum support

The maximum allowed support for the cuts is kept under control by two parameters: MAX SUPP ABS

that takes value in [0,∞], and MAX SUPP REL that takes value in [0, 1]. The largest instance in
Failure Set has 10,724 columns, therefore we can consider MAX SUPP ABS to take value in
[0, 10724]. We report results for the values MAX SUPP ABS = 500, 1000, 2000, 3000, 4000, 11000.
For MAX SUPP REL, we report results for the values 0.1, 0.2, 0.5, 0.8, 0.9, 1.0. Note that several
cut generators in COIN-OR Cgl and SCIP have a nonzero value for both parameters, but for
simplicity here we test the parameters one at a time.

Figure 5 graphs the number of failures and percentage of rejected cut depending on the
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Figure 4: Number of failures and cut rejection rate for cut generators with different values of
MIN VIOL. MIN VIOL is set to 10k, where k is the value on the x axis.

value of MAX SUPP ABS, whereas Figure 6 reports the same information depending on the value
of MAX SUPP REL.

The graphs show that limiting the maximum cut support has effect mostly on Type 2 failures,
but little effect on Type 1 failures (there are too few Type 3 failures to detect any difference).
A Friedman test to compare cut generators with MAX SUPP ABS ≥ 1000 does not reject the null
hypothesis that they have the same number of failures of Type 1, with a p-value of 0.6007. If we
compare the number of dives that end with a failure of Type 2 instead, the null hypothesis is
rejected with a p-value of 0.0008. Similarly, for MAX SUPP REL ≥ 0.5 no difference in the number
of failures of Type 1 is detected, but it is detected for Type 2 failures. If we limit the support
even more, then the number of Type 1 failures decreases as well. This suggests that limiting
the maximum cut support does not affect much the generation of invalid cuts unless we use a
low threshold, however it can help in making the LPs easier to solve.

5.3 Cut modification parameters

We now turn our attention to the cut modification procedures by varying the corresponding
parameters described in Section 2.1. As MIN VIOL is set to 0, cuts can only be rejected if, after
modification, they are no longer violated by the current LP solution.

5.3.1 Elimination of coefficients on surplus variables

The EPS ELIM parameter takes value in (0,∞], but it is reasonable to assume that it should have
a relatively small positive value. Indeed, eliminating large cut coefficients on surplus variables
before their substitution in terms of original variables is likely to yield invalid cuts. We test the
values EPS ELIM = 10k for k = −20,−18, . . . ,−2 to get a sense of the impact of the parameter.
The number of recorded failures and the cut rejection rate are reported in Figure 7.
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Figure 5: Number of failures and cut rejection rate for cut generators with different values of
MAX SUPP ABS.
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Figure 6: Number of failures and cut rejection rate for cut generators with different values of
MAX SUPP REL.
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Figure 7: Number of failures and cut rejection rate for cut generators with different values of
EPS ELIM. EPS ELIM is set to 10k, where k is the value on the x axis. The left y-axis has a
logarithmic scale.

In our experiments, the number of failures of Type 1 grows exponentially for EPS ELIM >
10−12. As expected, only small values for EPS ELIM make sense in practice. For all values of
EPS ELIM < 10−12, we observe very similar performance in terms of number of failures and
rejection rate.

5.3.2 Elimination of small cut coefficients

EPS COEFF takes value in (0,∞]. When cut coefficients smaller than EPS COEFF are set to zero,
the right-hand side of the cut is adjusted accordingly to preserve validity. We tested the values
EPS COEFF = 10k for k = −20,−18, . . . ,−2.

We can see from Figure 8 that EPS COEFF seems to have an impact on the number of
failures of all three types, especially Type 1 failures. The rejection rate increases quickly for
EPS COEFF ≥ 10−6 as the cut is no longer violated by the current LP solution.

5.3.3 Relaxation of the right-hand side value

Relaxation of the cut right-hand side value is controlled by two parameters: An absolute relax-
ation EPS RELAX ABS and a relative relaxation EPS RELAX REL. They both take value in [0,∞],
but large values are likely to lead to an inequality not violated by the LP solution. For both
parameters, we test the values 10k for k = −20,−19, . . . ,−1.

Figure 9 plots the results for EPS RELAX ABS and Figure 10 those for EPS RELAX REL.
For both parameters, values larger than 10−6 increase the rejection rate while decreasing the

number of failures. This is not surprising as the cut relaxation is significant. For values smaller
than 10−12, the cut rejection rate is small and the number of failures is fairly stable. However
for values of the parameters in the range [10−12, 10−6], the number of Type 1 failures increases
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Figure 8: Number of failures and cut rejection rate for cut generators with different values of
EPS COEFF. EPS COEFF is set to 10k, where k is the value on the x axis.
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Figure 9: Number of failures and cut rejection rate for cut generators with different values of
EPS RELAX ABS. EPS RELAX ABS is set to 10k, where k is the value on the x axis. The left y-axis
has a logarithmic scale.
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Figure 10: Number of failures and cut rejection rate for cut generators with different values of
EPS RELAX REL. EPS RELAX REL is set to 10k, where k is the value on the x axis.

significantly (up to a factor of 25 in the case of EPS RELAX ABS). We investigated this behavior
and found that the amount by which the right-hand side of the cut is relaxed directly affects
the fractionality of the basic integer variables at later rounds. We provide data to support this
claim.

For each value of EPS RELAX ABS tested above and for each dive, we record the fractionality
of the basic integer variables in all rounds, regardless of whether or not a GMI cut is derived
from the corresponding row. For each instance in Failure Set, we compute over all dives
and over all rounds the percentage pk of basic integer variables whose fractionality falls in each
of the ranges [10k, 10k+1), k = −9, . . . ,−1. Then, we compute the average E[pk] over all the
instances, for all values of k. The heat map in Figure 11 shows that E[pk] is maximum when
10k is close to the value of EPS RELAX ABS. Experiments with different cut generators yield the
same conclusions.

In light of these results, we can explain why relaxing the right-hand side by values in the
range [10−12, 10−6] yields an increase in the number of failures: the number of basic integer
variables with small fractionality (≤ 10−6) increases, which leads to potentially dangerous cuts
since Away is set to 10−9 in this experiment, as shown in Section 5.2.1.

We also note that 10−9 is the primal feasibility tolerance. Therefore, cut relaxations of that
order could increase the degeneracy of the LP bases and potentially lead to numerical troubles.
However, we were unable to confirm whether or not primal degeneracy plays any role in the
observed behavior of the cut generators.

6 Empirical testing: Parameter optimization

To investigate the question of finding the optimal values for the cut generation parameters, we
must first specify what we mean by “optimal”.
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Figure 11: Heat map of the matrix relating the fractionality of the basic integer variables and
the value of EPS RELAX ABS. Darker colors correspond to larger values in the matrix. To enhance
the picture, each column is rescaled to have its maximum equal to 1, i.e. the darkest color.

In this paper, we are concerned with the safety of the cuts, as opposed to their strength. Our
assumption is that cut generators should be compared in terms of strength only when they are
comparable in terms of safety. We think of the cut modification and numerical check procedures
as a filter. The cuts are modified and then checked, and they can be either accepted or rejected
depending on whether or not they are judged safe. Strength does not play a role here. We
would like the filter to be as loose as possible, while maintaining a given level of safety. In other
words, we want to minimize the rejection rate of the cut generator, while achieving at least a
given level of safety. Note that completely ignoring cut strength in this optimization step might
be seen as dangerous, as we could end up with a generator with low rejection and failure rates
but very weak. It turns out that this is not the case in our experiments. We verify in Section 7
that our best generators are comparable to standard generators in term of gap closed at the
root.

6.1 Choice of the safety level

The optimization algorithm treats safety of the cut generator as a constraint. This implies that
we should first define our measure of safety, and decide what is an acceptable level.

We measure safety of a cut generator on a set of instances by computing its failure rate
with the Dive-and-Cut procedure. The failure rate is defined as the fraction of dives that
result in a failure of Type 1, 2 or 3. In our experiments we have 51 instances and we typically
perform 300 dives on each for a total of 15,300 dives. Note that each dive may itself involve the
generation of hundreds or even thousands of cuts. The validity of each cut is tested against a
set of known feasible solutions.
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To compute what is an acceptable failure rate over Failure Set, we test the commercial
MILP solver IBM ILOG Cplex 12.2. We use Cplex as a black-box GMI cut generator within the
Dive-and-Cut framework. To obtain the generator we call CpxGMI, we disable all presolving
routines and cutting planes except GMI cuts, and read generated cuts directly from the LP
before branching at the root node. This disabling was necessary because Cplex does not provide
a way to interpret GMI cuts generated from a presolved LP in terms of the original variables
(which we need to check validity of the cuts). Note that we let Cplex generate GMI cuts with
its default settings (number of candidate variables, number of rounds). As a result, we do not
know precisely how many rounds are applied. Furthermore, we do not know if some cuts are
generated but discarded for any reason. Since we cannot control the cut generation loop in
Cplex, the only possibility is to read from the LP formulation the cuts that are still in the LP
when Cplex decides to branch at the root.

We apply Dive-and-Cut on Failure Set in the single-machine setup with the cutting
planes generated by Cplex as described above. Five failures of Type 1 were observed (one in
each of arki001, gt2, opt1217, p0033, p2756) and none of Type 2 or 3, out of the 51 × 300
trials. Therefore the total failure rate is 0.03%.

Even though we plan to generate significantly more cuts than CpxGMI, we want to achieve
a similar or better level of safety.

6.2 The optimization algorithm

Optimizing the cut generation parameters is a black-box optimization problem. The objective
function (cut rejection rate) and the constraints (failure rate) are unknown functions of the
decision variables. Moreover, evaluating these unknown functions is computationally expensive,
since this is done by running Dive-and-Cut on all instances of the test set.

Several methods for optimizing expensive black-box functions can be found in the literature.
One possible approach is to use a response surface method (see e.g. [16, 26]), where the constraint
violations can be embedded into the objective function as penalty terms. Black-box optimization
methods are typically tailored for continuous problems, avoiding the difficulty of dealing with
discrete variables. More recently, some attempts at solving problems with integer variables have
been made [17, 18].

Instead of using an existing method from the literature, we decided to develop an ad hoc
optimization algorithm for three reasons. First, we want to use a multidimensional objective
function. That is, instead of considering the average cut rejection rate over all the instances
and compare generators based on this single value, we consider the cut rejection rate on each
instance. Second, for assessing the safety of the generator, the failure rate must be below the
threshold and, in addition, a Friedman test on the failure rate must show that the generator is
comparable to or better than a reference generator. Third, we have the possibility of evaluating
several points in the parameter space in parallel, using the Condor grid. Traditional response
surface methods evaluate only one point at a time in a sequential fashion.

By using a statistical test for comparing points, we avoid the pitfall of aggregating results
on several instances into a single measure of quality.

An important observation from the single-parameter experiments in Section 5 is that the
cut rejection rate is monotone along each axis of the parameter space, and has a convex or
almost-convex shape. Thus, an optimization algorithm that performs some kind of local search
can reasonably be expected to find a good solution. Note however that since we use a vector-
valued objective function and use a Friedman test on failure rates for comparing points, even
convexity of the objective function would not guarantee convergence.
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We discretize the set of possible values for each cut generation parameter. We use evenly
spaced points in a reference interval, sometimes using a logarithmic scale for the parameter,
using our best judgment for each parameter.

For the optimization algorithm, we assume that there are h parameters to optimize, and the
i-th parameter can take values in the ordered set Pi = {pi,1, pi,2, . . . , pi,len(i)} where len(i) ∈ N,
and pi,j < pi,j+1 for j = 1, . . . , len(i) − 1. A cut generator g is completely characterized by a
point in P1 × P2 × · · · × Ph, and we denote by g(i) the value of the i-th parameter that defines
g. For all i, j ∈ Z, we define the function:

midpoint(i, j) =

{
i if |i− j| ≤ 1,

⌈(i+ j)/2⌉ otherwise.

For all Si ⊆ {1, . . . , len(i)}, we use the notation Pi(Si) = {pi,j : j ∈ Si}. Algorithm 2 describes
the main loop of the optimization algorithm. We label this algorithm OptimizeParameters.
The algorithm is a simple grid refinement algorithm. It repeatedly selects up to three values
for each parameter, evaluates all generators with parameters on the grid defined by these val-
ues, selects the best generators (using the subroutine select best(G) whose description is given
in Algorithm 3), and computes the smallest box containing all generators in that set. Opti-
mizeParameters employs simple mechanisms to ensure that the search does not collapse too
quickly towards a single point of the grid.

Given two cut generators g, g′ ∈ G, we write g <R g′ if a Friedman test on the cut rejection
rate prefers g over g′. Similarly, we write g <F g′ if a Friedman test on the failure rate yields
that g is better than g′. Note that the <R and <F relations depend on the set of cut generators
included in the statistical test. In Algorithm 3, <R or <F always refer to the test just performed.

For a set G of generators and a reference generator g̃, Algorithm 3 first selects in G′ all
generators in G that satisfy the upper bound on the failure rate and are not dominated by
g̃ according to a Friedman test on the failure rate. In this paper, we use the CpxGMI cut
generator discussed in Section 6.1 as the reference cut generator. It then applies a Friedman
test on the cut rejection rate on generators inG′ and selects in B all generators that are not rated
as worse than any other generator in G′. As mentioned in Section 4.3, pairwise comparisons
based on a Friedman test are not transitive, implying that it is possible to have three generators
g1, g2 and g3 with pairwise comparisons g1 <F g2, g2 <F g3, and g3 <F g1. When this happens,
none of the three generators are included in B, even if as a group they dominate all other
generators in G′. To mitigate this unfortunate situation, the algorithm has a last loop that
can increase the set B. That loop computes the set C of all generators in G′ \ B such that
adding any one of the generators c ∈ C results in c dominating a generator in B according to a
Friedman test on B ∪ c. One of the generators in C is then selected and added to B and this
is repeated while the computed set C is nonempty. Note that more sophisticated selection of
dominant subsets from inconsistent pairwise comparisons can be found in the literature [3, 28].
For our purposes, the simple approach above seems to work well enough.

The selection of the generator in C requires a distance function, which we define next.
Observe that in OptimizeParameters a grid G has up to 3 possible values for each parameter.
Given two generators g, g′ ∈ G and parameter i, the distance between g and g′ along parameter
i is 0 if g(i) = g′(i), it is 2 if |Si| = 3 and one of g(i) or g′(i) is the minimum value in Si and the
other is the maximum value, and it is 1 in all other cases. The distance d(g, g′) is then defined
as the sum over all parameters i of the distance between g and g′ along parameter i.

Observe that OptimizeParameters terminates if we were not able to refine the grid during
the previous iteration. Refining the grid depends on the detection power of the statistical test
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Algorithm 2 OptimizeParameters
.

for i = 1, . . . , h do
ℓi ← 1
ui ← len(i)
Si ← {ℓi,midpoint(ℓi, ui), ui}

G′ ← P1(S1)× P2(S2)× · · · × Ph(Sh)
repeat

G← G′

Evaluate cut generators at grid points g ∈ G
B ← select best(G)
for i = 1, . . . , h do

ℓ′i ← argminj{pi,j : (∃g ∈ B : g(i) = pi,j)}
u′i ← argmaxj{pi,j : (∃g ∈ B : g(i) = pi,j)}
if ℓ′i = u′i then

center← midpoint(ℓi, ui)
if ℓ′i = ℓi then

ℓ′i ← 2ℓi −midpoint(ℓi, center)
u′i ← midpoint(ℓi, center)

else if u′i = ui then
ℓ′i ← midpoint(ui, center)
u′i ← 2ui −midpoint(ui, center)

else
ℓ′i ← midpoint(ℓi, center)
u′i ← midpoint(ui, center)

ℓi ← max(1, ℓ′i)
ui ← min(len(i), u′i)
Si ← {ℓi,midpoint(ℓi, ui), ui}

G′ ← P1(S1)× P2(S2)× · · · × Ph(Sh)
until G = G′

performed in the subroutine select best() (Algorithm 3). When the grid cannot be refined, we
could follow several strategies, such as increasing the number of dives or rounds to increase the
detection power of the statistical tests, branching on the parameter space, or focusing only on
one area of the parameter space. However, in our experiments, we were always able to refine
the grid until it was sufficiently small, and therefore we did not need to resort to such strategies.

OptimizeParameters is fully determined once the discretized values for each parameter
are given. At the end of algorithm, we obtain a set of cut generators that yield lower cut
rejection rates than the remaining generators tested during the course of the optimization, and
such that a Friedman test on the rejection rate does not detect differences within the set.

6.3 Most influential parameters and initial grid

OptimizeParameters evaluates 3h points at each iteration. Since we have 12 parameters,
this would require evaluating an overwhelming 312 = 531, 441 generators at each iteration.
Therefore, we first identify the most useful parameters, optimize over this smaller set and then
find good values for the remaining ones.

To select the most useful parameters, we sample 500 points uniformly at random in the
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Algorithm 3 select best()

Input: Set of cut generators G, maximum failure rate γ, reference generator g̃
Output: Set of best cut generators B
Apply a Friedman test on G ∪ {g̃} on the failure rate
G′ ← {g ∈ G : (failure rate(g) ≤ γ) ∧ (g <F g̃)}
Apply on G′ a Friedman test on the cut rejection rate
B ← {g ∈ G′ : ( ̸ ∃g′ ∈ G : g′ <R g)}
repeat

C ← ∅
for all g ∈ G′ \B do

Apply on B ∪ {g} a Friedman test on the cut rejection rate
if ∃g′ ∈ B : g <R g′ then

C ← C ∪ {g}
if C ̸= ∅ then

Select c ∈ C such that ming∈B{d(c, g)} is minimum; break ties selecting c such that
conv(B∪{c}) contains the largest number of elements in C; break further ties arbitrarily
B ← B ∪ {c}

until C = ∅

discretized parameter space. We run Dive-and-Cut on these 500 points in the Condor setup
and fit a quadratic model for the total number of failures and for the rejection rate. We then use
classical regression techniques to identify the most relevant parameters. Details are presented
in the remainder of the section.

To choose the initial parameter ranges, we start with the ranges considered in Section 5,
and reduce them based on the results of the experiments reported in that section. In particular,
let Pi be the ordered set of values tested in Section 5 for the i-th parameter. We set the lower
(resp. upper) bound to the smallest (resp. largest) value such that the failure rate is at most
6% and the rejection rate is at most 66%.

The 6% value for maximum failure rate allowed is chosen to exclude cut generators that
yield more failures than CgBase. The value 66% for the maximum rejection rate allowed is
chosen after testing a small number of “good” cut generators with typical parameter values. The
smallest cut rejection rate recorded was 65.78% and the corresponding failure rate was 0.04%.
Since we already know a cut generator with a rejection rate of 65.78% and low failure rate,
we exclude parameter ranges that are not likely to contain a better generator. Unfortunately
this range reduction technique was not very effective: we could only reduce the range for
MAX DYN (lower bound increased to 106) and for EPS ELIM (upper bound decreased to 10−12).
The resulting discretized parameter space P , from which the parameter values are randomly
sampled is reported in Table 3. We sample 500 points p1, . . . , p500 from P uniformly at random.

We evaluate the performance of cut generators parameterized with p1, . . . , p500 on a subset
of 25 instances of Failure Set, chosen randomly. Let f : P → R and r : P → R be the
function returning respectively the failure rate and rejection rate.

We use the 12 parameters and their 66 first-order interaction terms and compute the best
(smallest ℓ2-norm of the vector of residuals) linear model fitting the points (pi, f(pi)) for i =
1, 2, . . . , 500. We do this with the additional restriction that the linear model must use exactly
s of the terms, for s = 1, 2, . . . , 12. Results are reported in Table 4. For brevity, we use l() to
indicate log, and only the initials of each parameter (e.g., MDL instead of MAX DYN LUB). Some
parameters can assume the value 0; we substitute log(0) = −50 for regression. Computations

26



AWAY 10i i = −9, . . . ,−1
EPS COEFF 10i i = −∞,−20, . . . ,−1
EPS RELAX ABS 10i i = −∞,−20, . . . ,−1
EPS RELAX REL 10i i = −∞,−20, . . . ,−1
MAX DYN 10i i = 6, . . . , 30
MIN VIOL 10i i = −∞,−20, . . . ,−1
MAX SUPP ABS 250i i = 1, . . . , 16
MAX SUPP REL i/10 i = 1, . . . , 10
EPS ELIM 10i i = −∞,−20, . . . ,−12
LUB 10i i = 2, 3, 4, 50
MAX DYN LUB 10i i = 6, . . . , 30
EPS COEFF LUB 10i i = −∞,−20, . . . ,−1

Table 3: Discretized parameter space. By convention, 10−∞ means 0.

are performed with the open-source software R [25], using the packages biglm and leaps.

l(A) l(ERR) l(MV) l(A) l(A) l(A) l(EC) l(EC) l(EC) l(ERA) l(ERR) MSA l(MDL)
size l(ERA) l(ERR) l(MV) MSA l(MV) l(MDL) l(MD) l(MV) l(ECL) l(ECL) BIC
1 * -55.99319
2 * * -75.88324
3 * * * -87.27452
4 * * * * -89.88623
5 * * * * * -98.61016
6 * * * * * * -99.13274
7 * * * * * * * -96.73726
8 * * * * * * * * -100.72865
9 * * * * * * * * * -105.34726
10 * * * * * * * * * * -105.75085
11 * * * * * * * * * * * -105.89380
12 * * * * * * * * * * * * -105.57976

Table 4: Independent variables defining the best subset of parameters for fitting a linear model
to the failure rate function f . Column “size” specifies the size of the subset. Terms in a subset
are identified with a “*”. If a column label contains two parameters, it indicates an interaction
term. The last column reports the Bayesian Information Criterion (BIC) value for each model.

We repeat the same process for the cut rejection rate, using the points (pi, r(pi)) for i =
1, 2, . . . , 500. Results are reported in Table 5.

We consider that the optimization can be performed in reasonable time on up to six pa-
rameters. From Tables 4 and 5, we select the parameters AWAY, EPS COEFF, EPS RELAX ABS,
EPS RELAX REL, MAX DYN, and MIN VIOL. These six parameters (and their interaction terms) are
sufficient to form the best subsets of parameters of size up to 7 for the model of the failure rate
f , and up to 5 for the model of the cut rejection rate r. The Bayesian Information Criterion
(BIC) values for the model using 7 terms for f and for the model using 5 terms for r are within
10% of the minimum reported values, suggesting that these models are not over-fitting the data
and predict the dependent variable well compared to the other subsets.

The grid over which the parameters are optimized is therefore the one reported in Table 3,
limited to the six chosen parameters.
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l(EC) l(ERR) l(MDL) l(A) l(A) l(A) l(A) l(EC) l(ERA) l(ERR) l(ERR) l(MD) l(MV) l(L) l(L)
size l(ERA) l(ERR) l(MD) l(MDL) l(MD) l(ERR) l(MD) l(MV) l(L) l(MDL) l(MDL) l(ECL) BIC
1 * -136.9948
2 * * -227.1880
3 * * * -254.1869
4 * * * * -280.0600
5 * * * * * -309.9264
6 * * * * * * -317.0011
7 * * * * * * * -317.0788
8 * * * * * * * * -319.7481
9 * * * * * * * * * -318.6268
10 * * * * * * * * * * -318.9703
11 * * * * * * * * * * * -317.5127
12 * * * * * * * * * * * * -315.7235

Table 5: Independent variables defining the best subset of parameters for fitting a linear model
to the cut rejection rate function r. Column “size” specifies the size of the subset. Terms in
a subset are identified with a “*”. If a column label contains two parameters, it indicates an
interaction term. The last column reports the Bayesian Information Criterion (BIC) value for
each model.

6.4 Results of the optimization algorithm

We ran OptimizeParameters as described in Section 6.2 for 5 iterations in the Condor setup.
This required a massive amount of computing power on the Condor grid. Testing each cut
generator requires typically between 20 and 40 hours of CPU time, and we tested thousands of
cut generators.

Our target failure rate is γ = 0.05%, close to Cplex’s 0.03%. However, we start with
γ = 0.2% at the first iteration, and lower this value by 0.05% at each iteration until we reach
the desired level. This prevents the failure rate constraint to eliminate a large portion of the
parameter space in the first iterations, while the parameter grid is still very coarse. Later, the
average and the standard deviation of the failure rate of the tested cut generator decrease and
we can be more strict with the maximum failure rate constraint. In the end, the cut generators
must be at least as safe as a reference generator (CpxGMI here) according to a Friedman test
on the failure rate.

In Table 6 we provide a summary of the first 5 iterations of OptimizeParameters. We
report the bounds of the parameter ranges at each iteration, the maximum allowed failure
rate γ, the fraction of tested cut generators that satisfy the constraint on the failure rate, the
average and standard deviation of the failure rate of the tested cut generators, and the average
and standard deviation of the cut rejection rate.

We note that there is a trade-off between cut rejection rate and failure rate, hence minimiz-
ers of the rejection rate have a failure rate close to the allowed maximum. Since we lower the
maximum failure rate γ in the first four iterations, the fraction of feasible cut generator drops.
This can be seen for instance in Iteration 4, where only a few of the tested cut generators are
feasible. Note that in the following iteration a larger fraction of cut generators is feasible, as γ
is not changed. The average failure rate and cut rejection rate clearly show that OptimizePa-
rameters is successful in identifying promising areas of the parameter space. By Iteration 5,
both failure rate and rejection rate are very low and very stable across the tested generators
(small standard deviation).

We report the parameters of the best cut generators found at Iteration 5 in Table 7. For
comparison, in Figure 12 we report a histogram of the average cut rejection rate of all cut
generators analyzed byOptimizeParameters that satisfy the maximum failure rate constraint
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Iteration

1 2 3 4 5

AWAY [10−9, 10−1] [10−5, 10−1] [10−2, 10−1] [10−2, 10−2] [10−2, 10−2]

EPS COEFF [0, 10−1] [0, 10−11] [10−16, 10−11] [10−12, 10−10] [10−11, 10−11]

EPS RELAX ABS [0, 10−1] [0, 10−1] [0, 10−11] [10−13, 10−9] [10−12, 10−10]

EPS RELAX REL [0, 10−1] [0, 10−1] [0, 10−11] [10−18, 10−13] [10−14, 10−12]

MAX DYN [106, 1030] [106, 1030] [106, 1018] [106, 109] [106, 106]

MIN VIOL [0, 10−1] [0, 10−11] [0, 10−11] [0, 10−11] [0, 10−11]

γ 0.20% 0.15% 0.10% 0.05% 0.05%

% feasible 61.72% 35.80% 16.26% 1.23% 11.11%

Avg fail rate 0.74% 0.55% 0.31% 0.21% 0.12%

Std dev fail rate 1.65% 0.66% 0.19% 0.13% 0.05%

Avg rej rate 71.72% 57.12% 47.96% 40.03% 41.88%

Std dev rej rate 21.40% 22.73% 12.52% 5.53% 1.27%

Table 6: Summary of the results of the OptimizeParameters. “γ” indicates the maximum
failure rate allowed at each iteration. “% feasible” indicates the fraction of tested cut generators
that satisfy the constraints (maximum failure rate and, from Iteration 4 on, at least as safe as
reference generator). We then report, for each iteration, the average and standard deviation of
the failure rate of the cut generators, and the average and standard deviation of the average
cut rejection rate per instance.

(0.05%). This is a total of 309 cut generators. The cut generators in Table 7 are among the
best 1% generators encountered by OptimizeParameters in terms of average cut rejection
rate. It is interesting to note that no cut generator falls in the 50%-60% bin for the average
rejection rate. In hindsight, we can explain this gap. OptimizeParameters explores areas
of the parameter space with small cut rejection rate but failure rate slightly above the allowed
threshold 0.05%, converging towards the only remaining feasible cut generators in the area that
was identified as having the lowest rejection rate.

Cut generator

BestGen BestGen2 BestGen3

AWAY 10−2 10−2 10−2

EPS COEFF 10−11 10−11 10−11

EPS RELAX ABS 10−11 10−11 10−11

EPS RELAX REL 10−13 10−13 10−13

MAX DYN 106 106 106

MIN VIOL 0 10−16 10−11

Failure rate 0.04% 0.04% 0.04%

Rejection rate 41.27% 41.27% 41.27%

Table 7: Best cut generators returned by OptimizeParameters.
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Figure 12: Histogram of the average rejection rate for the cut generators that satisfy maximum
failure rate of 0.05%.

6.5 Parameter sensitivity

We now proceed to analyze the sensitivity of the failure and cut rejection rates with respect to
the cut generation parameters in the neighborhood of one of the best generators found in the
previous section. Our reference cut generator is BestGen from Table 7. Note that since the
three generators in Table 7 are very similar and differ in one parameter value only, it seems
likely that the results in this section are valid for the other two generators also. Details of our
methodology and results are given in Appendix B.

Results in Appendix B suggest that for some of the parameters (e.g. AWAY, EPS RELAX ABS,

EPS RELAX REL, MAX DYN) even small changes have a visible effect. For other parameters, there
is more freedom in choosing the parameter value. In our experiments, the parameters controlling
the maximum support of the cutting planes have almost no effect on the number of failures.
This is probably due to the data set and the large time limit before a Type 3 failure is reported
(5 minutes). In practice, it may be desirable to set some limit for the cut support to speed
up LP resolves, but in this paper we focus on safety and we did not find evidence to support
the claim that dense cuts are less safe than sparse cuts, provided that the most important cut
generation parameters are well chosen. Setting to zero small coefficients on surplus variables
does not show any positive effect in our experiments: any nonzero value for EPS ELIM yields a
small (but statistically significant) increase in the number of failures, and for larger values many
invalid cuts are generated (see Section 5.3.1). Using a positive value for EPS ELIM may yield
some CPU time savings, but in terms of safety it does not seem advantageous. The experiments
with EPS RELAX ABS, EPS RELAX REL showed the behavior already observed in Section 5.3.3:
a value of the parameter approximately in the range [10−9, 10−6] yields an increase in the
number of failures, although here the increase is not as large as in Section 5.3.3 because the
remaining cut generation parameters mitigate the effect. It does not seem a good idea to choose
EPS RELAX ABS or EPS RELAX REL close to 10−9. The ranges for MAX DYN LUB are very similar
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to those of MAX DYN, and the differences could be explained by the fact that MAX DYN LUB is
less influential than MAX DYN as it acts on fewer variables. In light of these results, there is
not much evidence to support using for MAX DYN LUB a value different than the one used for
MAX DYN. In our experiments, using any value for EPS COEFF LUB other than the starting value
10−13 yielded a small but statistically significant increase in the number of failures. We do not
have an explanation for this behavior.

We also analyzed sensitivity with respect to the number of rounds ρ of cut generation.
Performing a local reoptimization for ρ = 15, we found that the parameters did not change
significantly. In particular the optimal values AWAY = 10−2 and MAX DYN = 106 stayed the same.

6.6 Scaling

For a set of four cut generators (Bestgen, Iter1, Iter2, Iter3; see Section 7 for their
descriptions), we tested six variants of cut scaling in the single-machine setup. We chose these
four generators because they are safe and belong to different regions of the parameter space.
The six scaling variants are based on the following three commonly used procedures:

(i) Scale the largest cut coefficient to 1;

(ii) Scale the cut right-hand side to 1;

(iii) Scale all the coefficients of integral variables to integer.

For each procedure, we either enforce the scaling (cuts which cannot be scaled properly
because the scaling factor is too large or too small are discarded), or do not enforce the scaling
(if scaling fails, we keep the original cut). Hence the six combinations. We applied Scaling
before the remaining cut modification procedures.

The results are the following. For generators Iter1 and Iter2 there is no difference in
safety among the scaling variants detected by the usual significance tests. This is expected
because Iter1 and Iter2 are very safe and conservative generators. For generators Iter3
and Bestgen, using (ii) decreases safety noticeably and is detected by a Friedman test at the
95% level. All other scaling variants to do not yield significant differences. There are some
differences in the failure rates in many cases, but not enough to be significant.

Using (iii) yields very safe generators: we recorded only 1 failure in this entire set of exper-
iments. However the rejection rate goes up to around 90%, far from the rejection rate of the
other generators. Moreover, as all four generators have low failure rates, a Friedman test does
not detect a significant improvement when using (iii).

Summarizing, we did not find evidence that Scaling is beneficial, provided the remaining
cut parameters are properly chosen. This is not surprising in light of the fact that we use a
relative feasibility tolerance, and that LP solvers typically rescale cuts before using them.

7 Validation of the results

The goal of this section is to show that the conclusions drawn in the preceding sections have
useful practical implications. All experiments in this section were executed in the single-machine
setup, which is a different architecture (x86 64) than the Condor grid (generic i386). Therefore,
we can verify if our conclusions carry over to different architectures.

There are several points that we want to investigate. First, we want to check that the
optimal generators obtained at the end of OptimizeParameters are safe and reject fewer cuts
than other generators. We would also like to confirm that a small cut rejection rate translates
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into a cutting plane generator producing stronger cuts as a whole. A thorough analysis of the
strength of cut generators is beyond the scope of this paper. However, here, we would like to
investigate whether, when two cut generators have a comparable level of safety, the generator
rejecting fewer cuts is stronger. We use the percent of integrality gap closed as a measure of
strength. This not a very accurate measure of strength, but is a widely accepted approximation.
Note that the results on the strength of the generators presented in this section are not meant
to conclude that one of the tested generators should be used in practice “as is”. The tests done
here ignore many factors impacting the practical efficiency of cut generators when used in a
Branch-and-Cut algorithm, such as the impact of cut support on LP resolve times.

We compare 11 cut generators over 300 dives of Dive-and-Cut on Failure Set. We use
a different random seed than in previous experiments. Thus, we are not testing on the same
instances that were used for OptimizeParameters, i.e. the integer variables are fixed in a
different way. The cut generators that we test are the following.

• BestGen: generator #1 from Table 7.

• BestGenAway: generator #1 from Table 7 with AWAY set to 5 ·10−3 as may be suggested
by the results in Table 14.

• Iter1: the cut generator with lowest failure rate in the set of best cut generators explored
at Iteration 1 of OptimizeParameters.

• Iter2: the cut generator with lowest failure rate in the set of best cut generators explored
at Iteration 2 of OptimizeParameters.

• Iter3: the cut generator with lowest failure rate in the set of best cut generators explored
at Iteration 3 of OptimizeParameters.

• CglGomory: the Gomory cut generator from Cgl.

• CglGomoryMod: our GMI cut generator parameterized in a similar way to CglGo-
mory.

• CglLandP: the Lift&Project cut generator from Cgl, parameterized with pivotLimit =

0 so that it generates only GMI cuts.

• CglLandPMod: our GMI cut generator parameterized in a similar way to CglLandP.

• CpxGMI: Cplex’s GMI cut generator with default parameters (i.e. Cplex decides the
number of cuts and the number of rounds of cutting planes).

• Cpx: Cplex’s cut generators with default parameters (i.e. Cplex decides which cutting
plane families should be applied, the number of cuts and the number of rounds).

We note that the implementation of CglGomory uses many more tolerances than our
GMI cut generator, therefore CglGomoryMod will yield different results. On the other hand,
our implementation of CglLandPMod is very similar to CglLandP, but a few important
differences remain. In particular, CglLandP is tied to COIN-OR Clp [9] as the LP solver,
whereas we use Cplex. Furthermore, CglLandP generates at most 50 cuts per round and uses
the optimal simplex tableau returned by the LP solver, while our GMI cut generator has no
limit on the number of generated cuts and internally recomputes the optimal simplex tableau
from scratch. For these reasons, comparisons with CglLandP are difficult to interpret and
should be taken with a grain of salt.
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BestGen 0.065 = = = = - = = - = -
BestGenAway 0.072 = = = = - = = - = -

Iter1 0.084 = = = = - = = - = -
Iter2 0.098 = = = = - = = - = -
Iter3 0.065 = = = = - = = - = -

CglGomory 3.555 + + + + + + + + + =
CglGomoryMod 0.229 = = = = = - = = = -

CglLandP 1.680 = = = = = - = - = -
CglLandPMod 1.379 + + + + + - = + + -

CpxGMI 0.039 = = = = = - = = - -
Cpx 1.634 + + + + + = + + + +

Table 8: Comparison of the failure rate per instance. Column “Fail. rate” gives the average
failure rate (%). A + (resp. −) in row i and column j means that the failure rate of the cut
generator in row i is significantly larger (smaller resp.) than the failure rate of the cut generator
in column j. The significance level is 95%.

We consider CglGomoryMod and CglLandPMod as “reasonable” parameterizations of
the GMI cut generator that are interesting to compare to our reference BestGen. Comparing
BestGen with Iter1, Iter2 and Iter3 allows us to verify that Algorithm 2 made progress
and found better cut generators in later iterations. Note that Iter3 differs from BestGen only
in the value of EPS RELAX REL (10−16 instead of 10−13), hence they should have very similar
results. We do not report results with Iter4 as it is identical to BestGen. BestGenAway
is parameterized similarly to BestGen, but uses a smaller value of the AWAY parameter. This
should yield a smaller cut rejection rate with a comparable safety level, according to the exper-
iments in Appendix B. We remark that in Dive-and-Cut, standard features of the LP solver
such as presolve are turned on with default values.

We first compare the safety of the cut generators. We apply a Friedman test on the failure
rate. The null hypothesis that all generators have the same failure rate is rejected with a p-value
of 0.0000. We perform post-hoc analysis to identify which generators are safer by determining,
for each pair of cut generators, if the difference in the failure rates is significant. Results are
reported in Table 8.

The results show that the failure rate has increased slightly with respect to the maximum
allowed failure rate during the optimization run. This is explained by the fact that we are now
running dives on different instances and on a different machine, therefore it is not surprising
that the computations give different results. However, according to the statistical tests reported
in Table 8, the safety of BestGen, BestGenAway, Iter1, Iter2, and Iter3 is still not
significantly different from that of CpxGMI, which is our target. Our five cut generators are
safer than CglGomory, CglLandPMod and Cpx. Notice that CglLandP has a much larger
failure rate than CpxGMI, but no difference is detected by the Friedman test, for two reasons.
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Figure 13: Failure rate on all instances with nonzero failure rate. When two or more instances
have the same failure rate for a cut generator, we group them together and increase the size
of the point as indicated in the legend. For each cut generator, we additionally plot a box-
and-whisker graph of the failure rate: The box extends from the 25% to the 75% quantile, the
middle bar indicates the median. The whiskers extend from the end of the box to the most
distant point whose value lies within 1.5 times the difference between the 75% and the 25%
quantile.

First, the test does not take into account the magnitude of the differences. Second, the large
average is mostly due to a single instance with very large failure rate (arki001 with 70.33%
failure rate). In Figure 13 we report the failure rate per instance. Figure 13 shows that among
the cut generators deemed as safe as CpxGMI by a Friedman test, CglLandP is the least
consistent, exhibiting the largest median and a large failure rate on a few instances. CpxGMI,
BestGen and BestGenAway are the most consistent, with very low failure rates on every
instance.

As we cannot compute the cut rejection rate for cut generators that are not based on our
implementation (i.e. Cplex and the two Cgl generators), we use the total number of cuts instead
of the cut rejection rate. This is of course different than comparing the cut rejection rate, as a
cut generator may have a larger cut rejection rate while generating more cuts in the 30 rounds of
cut generation. The comparisons are based on a Friedman test, where the performance measure
is the total number of generated cuts. Results are reported in Table 9. We see that, according
to the Friedman test, BestGenAway generates significantly more cuts than all remaining cut
generators except CglLandP and CglLandPMod. In turn BestGen generates significantly
more cuts than CpxGMI and Cpx. In fact BestGenAway generates roughly 50 times as
many cuts as CpxGMI while still yielding a comparable number of failures. However, we have
no way of computing the actual rejection rate of Cplex, as explained in Section 6.1. Table 10
compares the cut rejection rate for the six cut generators where this number can be computed,
using a Friedman test. It is interesting to note that BestGenAway has a significantly smaller
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BestGen 1222.47 - + + = = + - - + +
BestGenAway 1246.43 + + + + + + = - + +

Iter1 991.82 - - = - - - - - + +
Iter2 992.28 - - = - - - - - + +
Iter3 1227.72 = - + + = + = - + +

CglGomory 822.48 = - + + = + = - + +
CglGomoryMod 1106.29 - - + + - - - - + +

CglLandP 1034.41 + = + + = = + - + +
CglLandPMod 1599.87 + + + + + + + + + +

CpxGMI 22.53 - - - - - - - - - -
Cpx 126.95 - - - - - - - - - +

Table 9: Comparison of the total number of cuts. Column “Gen. cuts” gives the average number
of generated cuts per dive.

rejection rate than BestGen.
Finally, we compare the integrality gap closed by the cut generators. We use a Friedman

test where the performance measure is the gap closed after applying cutting planes after each
dive. The integrality gap for each dive is computed using the objective value of the best solution
against which validity of the cuts is tested. This is an upper bound on the optimum value of the
instance obtained after fixing random variables in Dive-and-Cut. The null hypothesis that
all cut generators close the same amount of gap is rejected with a p-value of 0.0000. Pairwise
comparisons are reported in Table 11. Note that with this test we do not have any quantitative
information in the improvement on the gap closed: The Friedman test only tells us whether
some algorithms consistently rank better than others. The performance difference could be
negligible and could depend on other factors than the strength of the cuts. To eliminate this
undesired effect, we perform a related experiment where we require a minimum difference of 1%
integrality gap for a cut generator to be considered better than another. A Friedman test for
this experiment yields exactly the same pairwise comparisons as in Table 11.

We observe that BestGenAway closes a similar amount of gap as BestGen and Iter3,
and all three close more gap than all other generators except CglGomory, CglLandP and
CglLandPMod. Recall, however, that the failure rate of CglGomory and CglLandPMod
is significantly larger than those of BestGen, BestGenAway and Iter3. BestGenAway
is comparable to CglLandPMod in terms of gap closed, thus it could be argued that it is
stronger than BestGen and Iter3 (recall that the pairwise comparisons are not transitive).

Our final experiment consists in testing the cut generators BestGen, BestGenAway, Cgl-
LandP, CpxGMI, and Cpx on the set of instances labeled Extended Set, see Appendix A.2.
These 69 instances were not used for OptimizeParameters as they yield fewer failures than
instances in Failure Set. We perform 300 dives per instance. The number of recorded failures
is reported in Table 12.
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BestGen 37.21 + - - = - =
BestGenAway 35.11 - - - - - -

Iter1 57.40 + + = + = +
Iter2 57.37 + + = + - +
Iter3 37.26 = + - - - =

CglGomoryMod 63.30 + + = + + +
CglLandPMod 36.31 = + - - = -

Table 10: Comparison of the rejection rate. Column “Rej. rate” gives the average rejection rate
(%).
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BestGen = + + = = + - - + +
BestGenAway = + + = = + - = + +

Iter1 - - = - - = - - + =
Iter2 - - = - - = - - + =
Iter3 = = + + = + - - + +

CglGomory = = + + = + - - + +
CglGomoryMod - - = = - - - - + =

CglLandP + + + + + + + = + +
CglLandPMod + = + + + + + = + +

CpxGMI - - - - - - - - - -
Cpx - - = = - - = - - +

Table 11: Comparison of the gap closed.

Failures Distinct instances
T. 1 T. 2 T. 3 Tot. T. 1 T. 2 T. 3 Tot.

BestGen 0 33 17 50 0 4 5 9
BestGenAway 0 24 24 48 0 5 5 10
CglLandP 0 49 170 219 0 10 7 12
CpxGMI 35 2 0 37 6 2 0 8
Cpx 400 2 0 402 21 2 0 23

Table 12: Number of failures recorded on Extended Set and number of distinct instances
with at least one failure.
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BestGen, BestGenAway and CglLandP do not generate Type 1 failures, performing
better than CpxGMI and Cpx in this regard. However, they generate more Type 2 and
Type 3 failures. We remark that 29 of the 33 failures of Type 2 for BestGen and 19 of the 24
failures of Type 2 for BestGenAway are recorded on the same instance (rococoC10-001000).
CglLandP is safe on most instances but shows again poor performance on a few problems.
41 out of the 49 Type 2 failures occur on three instances only (lectsched-4-obj, momentum1,
momentum2). On four instances (30n20b8, momentum2, net12, rocII-4-11), the 300 dives are
not carried out to completion because of the early stopping criterion (more than 30 Type 3
failures). It is clear that our BestGen generators are very effective in rejecting potentially
invalid cuts, whereas CpxGMI and Cpx are more effective in rejecting cuts that may slow
down or create troubles in the LP solution process. This is not surprising as these aspects
are not the primary focus of our investigation, while this is obviously an important practical
consideration.

8 Conclusions

Practitioners are well aware that MILP solvers sometimes report incorrect optimal solutions.
This is due to the fact that computations are performed in finite precision and numerical
difficulties do occur. A major source of numerical problems arises from the cutting planes used
in Branch-and-Cut solvers, even though these solvers take various steps to avoid the generation
of invalid cuts. This paper studies the effectiveness of these safety-enhancing steps on GMI
cuts. We show that, among the dozen or so parameters that are widely used for safety, only
five seem to really matter. The two most important are AWAY and MAX DYN:

• A cut should not be generated if the value of the corresponding integer basic variable is
within AWAY of an integer value; we found that the best setting for AWAY is somewhere
between 0.005 and 0.01.

• A cut is discarded if the ratio between the largest and smallest absolute values of the
nonzero coefficients is larger than MAX DYN. Our optimization algorithm found that setting
MAX DYN to 106 works well.

In addition, cut coefficients that are smaller than some small value EPS COEFF are set to zero,
adjusting the right-hand side accordingly, and the cut right-hand side itself is relaxed using
an absolute amount RELAX RHS ABS and a relative amount EPS RELAX REL. Our optimization
algorithm recommends EPS COEFF = RELAX RHS ABS = 10−11 and EPS RELAX REL = 10−13.

Using these parameters, less than 40% of the GMI cuts generated in 30 rounds were rejected
as being potentially unsafe. We found that, compared to generators of existing solvers, our
generators generate many more cuts while being at least as safe.

Selecting the best cuts among those that are deemed to be safe, with the goal of improving
the performance of Branch-and-Cut solvers, is an important topic for future research.

Acknowledgments: We thank the referees for their constructive comments. We are ex-
tremely grateful to Jeff Linderoth and the entire Condor team at UW-Madison for giving us
the opportunity of running experiments on the grid.
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A Dive-And-Cut Solution-Generation phase

In this section, we describe the algorithm GenerateSolutions (see Algorithm 4) used to
generate a set S of (ϵabs, ϵrel, 0)-feasible solutions for a problem instance P . GenerateSolu-
tions applies a Branch-and-Cut solver B to the instance at hand P and acts whenever the
solver discovers an integer solution. In Cplex, this can be achieved by a call to the function
incumbentcallback().

Whenever a candidate solution x̃ is discovered, GenerateSolutions rounds each integer
variable to the nearest integer, and checks the feasibility of this rounded solution. If it fails
to satisfy the constraints within an absolute feasibility tolerance ϵabs and a relative feasibility
tolerance ϵrel, it is rejected.

If x̃ is not rejected, we use a rational LP solver to generate provably feasible solutions to
the problem P that have value x̃i for all integer variables xi. First, we seek a provably feasible
solution x∗ that minimizes the original objective function. If we are able to compute x∗, it is
added to the set S of feasible solutions. If its Euclidean distance to x̃ is less than ϵrel, we are
done and x̃ is accepted. Otherwise, we seek the point x′ in the feasible region of the LP that is
closest to x̃ in ℓ1-norm. If ∥x̃− x′∥2 ≤ ZERO, these two points are essentially the same and x′ is
added to S. If ∥x̃− x′∥2 ≤ ϵrel, x̃ is “feasible enough” according to our criteria and is added to
S. In both cases, x̃ is accepted. Otherwise, it is rejected.

Algorithm 4 GenerateSolutions. The solution of an LP is the symbol NIL if the LP is
infeasible.

Input: problem P = (A, b, c), Branch-and-Cut solver B, rational LP solver R, tolerances
ϵabs, ϵrel
Output: set S of (ϵabs, ϵrel, 0)-feasible solutions
Apply B to P
for (every candidate solution x̃ discovered) do

Set feasible← false

Set x̃i ← ⌊x̃i⌉ ∀i ∈ NI

if (maxi∈[m]{bi − aix̃} ≤ ϵabs) and (maxi∈[m]{(bi − aix̃)/∥ai∥2} ≤ ϵrel) then

Compute x∗ = argmin{c⊤x | Ax ≥ b, x ≥ 0, xi = x̃i ∀i ∈ NI} with R
if (x∗ ̸= NIL) then

Set S ← S ∪ {x∗}
if (∥x∗ − x̃∥2 ≤ ϵrel) then

Set feasible← true

else
Compute x′ = argmin{∥x̃− x∥1 | Ax ≥ b, x ≥ 0, xi = x̃i ∀i ∈ NI} with R
if (∥x̃− x′∥2 ≤ ZERO) then
Set S ← S ∪ {x′}
Set feasible← true

else if (∥x̃− x′∥2 ≤ ϵrel) then
Set S ← S ∪ {x̃}
Set feasible← true

if (feasible = true) then
Report to B that x̃ is accepted

else
Report to B that x̃ is rejected
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Note that GenerateSolutions uses the ℓ1-norm for the problem of finding x′ close to x̃
since this can be formulated as an LP using the usual reformulation: The objective function
minx∈Rn ∥x̃−x∥1 can be expressed in linear form by adding n extra variables and 2n constraints:
minw,x∈Rn{1nw | x̃ − x ≤ w, x − x̃ ≤ w}. Since the ℓ1-norm overestimates the ℓ2-norm this
guarantees that x′ is also at most ϵrel away from x̃ in ℓ2-norm. As a consequence, if such an x′

exists, the relative violation of any nonnegative linear combinations of rows of Ax ≥ b by x̃ is
at most ϵrel.

GenerateSolutions accomplishes several desirable goals. First, it does not modify the
original instances. Second, given enough time, it finds an optimal solution (feasible according
to our criteria) and adds it to the set S. Third, it potentially returns a large and diverse
set of feasible solutions, with different values for the integer variables. This is valuable for
our purposes, as this allows testing the validity of cutting planes with respect to solutions in
different parts of the feasible region.

However, GenerateSolutions has also some drawbacks. First, the generated solutions are
the nearest floating point representation (component-wise) of the feasible solutions computed in
rational numbers. Therefore, they could be infeasible when the left-hand side of the constraints
is computed in finite precision. Second, the generated solutions might be cut off in terms of
absolute violation by linear combinations of the problem constraints. Using only a relative
violation tolerance would address the second issue, as explained above. However, using also an
absolute feasibility tolerance makes sense, because all available Branch-and-Cut codes have an
absolute feasibility tolerance ϵabs > 0.

A.1 Implementation

GenerateSolutions’s implementation is tied to Cplex 12.2 because it uses advanced Branch-
and-Cut functions. In particular, we use the incumbentcallback() function to intercept the
discovery of feasible solutions and run our implementation of Algorithm 4. The feasibility and
integrality tolerances for Cplex were set to 10−9, the smallest feasibility tolerance allowed by
Cplex2. The rational LP solver used by GenerateSolutions is QSopt ex [4].

We parameterize the Branch-and-Cut algorithm of Cplex as follows. The integrality gap
allowed for optimality is set to 0 (both relative and absolute). The time limit is set to 6 hours,
the number of parallel threads to 2, and SolutionPoolIntensity is set to 2. We disable
rescaling of the LP matrix, in order to avoid discovery of solutions that are infeasible for the
unscaled problem (Cplex error code: OptimalInfeas). If the instance is solved to optimality
before the 6 hours time limit, we call the CPXpopulate() procedure to generate more solutions
until the time limit is hit or an additional 100 solutions are found. The strategy for replacing
solutions in the pool when it is full is set to Diversify3.

The experiments in this section are run on a machine equipped with an AMD Opteron 4176

HE processor clocked at 2.4GHz and 48GB RAM, running Linux.

A.2 Computational experiments on MIPLIB instances

Our initial test set contains all instances fromMIPLIB3 [7], MIPLIB2003 [2], and the Benchmark
set of MIPLIB2010 [21] beta (downloaded March 2011) for a total of 169 instances. Ten instances
are eliminated, as GenerateSolutions does not find any feasible solution for them. We are

2The smallest integrality tolerance is 0.0, but the user manual warns that such a small tolerance may not
always be attainable.

3This setting should have no effect on the outcome since we intercept each solution discovered and store it in
a separate pool; we mention it only for completeness.
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left with the 159 instances listed in Table 13. On the satellites1-25 instance, more than 106

solutions are found during the initial Branch-and-Cut; we keep the best solution found and an
additional 1499 solutions selected at random.

10teams 103 flugpl 105 momentum1 27 pp08aCUTS 120
30n20b8 17 gen 44 momentum2 34 pp08a 117
a1c1s1 65 gesa2 97 momentum3 1 protfold 6
acc-tight5 52 gesa2 o 101 msc98-ip 11 pw-myciel4 52
aflow30a 107 gesa3 112 mspp16 56 qiu 125
aflow40b 113 gesa3 o 101 mzzv11 104 qnet1 110
air03 103 glass4 179 mzzv42z 104 qnet1 o 104
air04 109 gmu-35-40 71 n3div36 75 rail507 58
air05 105 gt2 2 n3seq24 7 ran16x16 69
app1-2 8 harp2 129 n4-3 95 rd-rplusc-21 2
arki001 58 iis-100-0-cov 53 neos-1109824 58 reblock67 27
atlanta-ip 32 iis-bupa-cov 56 neos-1337307 43 rgn 102
bab5 67 iis-pima-cov 56 neos-1396125 83 rmatr100-p10 56
beasleyC3 69 khb05250 105 neos13 67 rmatr100-p5 60
bell3a 102 l152lav 106 neos-1601936 67 rmine6 72
bell5 102 lectsched-4-obj 59 neos18 57 rocII-4-11 19
biella1 65 liu 315 neos-476283 33 rococoC10-001000 74
bienst2 86 lseu 105 neos-686190 60 roll3000 156
binkar10 1 55 m100n500k4r1 5 neos-849702 304 rout 125
blend2 115 macrophage 66 neos-916792 73 satellites1-25 1500
bley xl1 56 manna81 101 neos-934278 8 set1ch 127
cap6000 111 map18 128 net12 106 seymour 113
core2536-691 11 map20 127 netdiversion 54 sp97ar 122
cov1075 57 markshare1 117 newdano 73 sp98ic 68
csched010 98 markshare2 117 noswot 104 sp98ir 64
dano3mip 10 mas74 159 ns1688347 6 stein27 102
danoint 2 mas76 137 ns1758913 65 stein45 103
dcmulti 117 maxgasflow 1236 ns1830653 189 swath 124
dfn-gwin-UUM 72 mcsched 70 nsrand-ipx 114 t1717 16
dln 52 mik.250-1-100.1 54 nw04 105 tanglegram1 11
ds 23 mine-166-5 70 opm2-z7-s2 65 tanglegram2 56
egout 3 mine-90-10 71 opt1217 2 timtab1 132
eil33.2 66 misc03 102 p0033 104 timtab2 170
eilB101 95 misc06 107 p0201 103 tr12-30 217
enigma 3 misc07 105 p0282 106 unitcal 7 133
enlight13 22 mitre 82 p0548 2 vpm1 106
ex9 23 mkc 123 p2756 109 vpm2 113
fast0507 108 mod008 102 pg5 34 62 vpphard 19
fiber 106 mod010 4 pigeon-10 2 zib54-UUE 70
fixnet6 111 modglob 203 pk1 108

Table 13: Number of feasible solutions found by GenerateSolutions on each instance. In-
stances in bold face are in the Failure Set. Instances in italics are in the Extended Set.

The vast majority of the solutions found by GenerateSolutions are feasible with very
small tolerances. In Figure 14 we report a histogram of the maximum absolute violation for the
generated solutions, computed as maxi∈[m]{bi−aix∗}. The maximum violation for 62.99% of the
solution is 0, i.e., they are feasible even when checked using finite precision and compensated
summation [20]. We note that the use of compensated summation here has a small effect,
increasing the fraction of solutions with a 0 violation by 0.27%.

For 98.8% of the solutions the maximum violation is smaller than 10−11. We eliminate the
solutions for which the maximum violation is 10−9 or more.

For 152 instances out of 159 the optimal solution is known, therefore we can analyze the
objective value of the solutions found byGenerateSolutions on these instances. We compute
the relative distance from the known optimum f∗ of the best solution value f̄ among the
solutions accepted by GenerateSolutions, using the formula: (f̄ − f∗)/|f∗| if f∗ ̸= 0, or
(f̄ − f∗) otherwise. In 138 cases out of 152, this value is less than 0.5%, hence we found a
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Figure 14: Maximum absolute violation of the solutions found by GenerateSolutions.

solution that satisfies our criteria and can be considered optimal. For the remaining 14 cases,
the average relative distance is 231.02%. This large value is due to a small number of instances
where GenerateSolutions returns solutions of poor quality: markshare1 (200% away from
the optimum), markshare2 (2100% away from the optimum), satellites1-25 (700% away
from the optimum).

The 51 instances in bold face in Table 13 form the Failure Set. The selection is discussed
in Section 4.2. The 69 instances in italics in Table 13 form the Extended Set used to validate
our results on the Failure Set. The Extended Set contains all instances of Table 13 that
are not part of Failure Set and for which 300 dives require less than 24 hours of CPU time
and generate less than 30 failures of Type 3.

The instances, solutions and code used in this paper are available on the website of the
authors.

B Parameter Sensitivity

This section contains a sensitivity analysis of the failure and rejection rates when small changes
are applied to the parameters of the cut generator Bestgen from Table 7, denoted by g∗ in
this section. Experiments were run in the Condor setup.

We start with the parameterization p∗ of g∗ given in Table 7 and we investigate changes in a
single parameter at a time. For each parameter i, we want to find a range Ri such that changing
the value in p∗ of p∗i to any value in Ri yields a generator such that both a Friedman test on
the rejection rate and a Friedman test on the failure rate deem the generator comparable to
g∗. We then determine the variation of the failure rate and cut rejection rate for values slightly
outside of Ri.

The algorithm we use is a simple sampling algorithm. It maintains an interval Ri containing
the convex hull of all tested values of pi for which the modified generator is deemed similar to g∗.
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The initial interval Ri is the single point p
∗. The algorithm also maintains the smallest interval

Ri containing Ri such that one tested point on each side of Ri is deemed different between g∗

and the modified generator. The initial interval Ri is chosen as the initial range of parameter
i used in Section 6.4. However, if we already know from previous experiments one value pi
smaller (resp. larger) than p∗i such that the corresponding cut generator is not equivalent to g∗,
we remove all values smaller (resp. larger) than pi from the initial interval Ri.

At each iteration, we select k parameter values p1, . . . , pk ∈ Ri\Ri, compare the correspond-
ing cut generators with g∗ and update both Ri and Ri. The algorithm continues until we are
satisfied with the gap between Ri and Ri. We use k = 10, except when the gap between Ri and
Ri is very small. In that case, we use a smaller value for k. The tested values p1, . . . , pk are
equally spaced in Ri \Ri, with k/2 points on each side of Ri. We use a logarithmic scale for all
parameters that have a logarithmic scale in Table 3.

A similar algorithm is used to compute intervals Fi and Fi such that all generators in Fi

have a safety level similar to g∗ according a Friedman test on the failure rate, without regard
to the rejection rate. The interval F i contains F i and one tested point on each side of F i for
which the modified generator is deemed different to g∗ in term of safety.

Results are reported in Table 14. The columns are as follows. “p∗” contains the optimal
value of the parameter in cut generator #1 of Table 7. For the parameters that are not reported
in Table 7, we use the value corresponding to disabling the cut modification or numerical check
that employs the parameter. For the LUB parameters, we set the value to the corresponding
non-LUB parameter. In this table, LUB was set to 103 (see Section 5.1). Columns “R”, “R”,
“F”, and “F” contain the four intervals of interest for each parameter. “Increase” indicates
the direction along which the cut rejection rate increases; the column contains “—” if our
experiments did not provide enough information for computing the direction.
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