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Abstract

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen
et al., which we denote by RCP. We study the relative strength of the split and triangle cuts
of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than
the triangle closure under a ‘worst-cost’ type of measure. However, despite experiments
carried out by several authors, the usefulness of triangle cuts in practice has fallen short of
its theoretical strength.

In order to understand this issue, we consider two types of measures between the closures:
the ‘worst-cost’ one mentioned above, where we look at the weakest direction of the split
closure, and the ‘average-cost’ measure which takes an average over all directions. Moreover,
we consider a natural model for generating random RCP’s. Our first result is that, under
the worst-cost measure, a random RCP has a weak split closure with reasonable probability.
This shows that the bad examples given by Basu et al. are not pathological cases. However,
when we consider the average-cost measure, with high probability both split and triangle
closures obtain a very good approximation of the RCP. The above result holds even if
we replace split cuts by the simple split or Gomory cuts. This gives an indication that
split/Gomory cuts are indeed as useful as triangle cuts.

1 Introduction

Consider an IP in standard form:

min cy

Ay = b (IP)
y ≥ 0

y ∈ Zd .

Suppose that B is an optimal basis for the LP relaxation of (IP). Rewriting IP in tableaux form
with respect to B (i.e., pre-multiplying the system by B−1) we obtain the equivalent system

min c̄NyN

yB = b̄− N̄yN (IP’)
y ≥ 0

y ∈ Zd

where c̄ ≥ 0 due to the optimality of B.
In [1], Andersen et al. introduced a relaxation of (IP’) which we call Relaxed Corner Polyhe-

dron (RCP). This is a further weakening of the Corner relaxation [13] where: (i) the integrality
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constraints are dropped for the nonbasic variables and (ii) the non-negativity constraints are
dropped for the basic variables. Rewriting in a different way, an RCP is a MIP of the form

min cs

x = f +
n∑

j=1

rjsj (RCP)

s ≥ 0
x ∈ Zm

with c ≥ 0.
An RCP is defined by the vectors f, r1, . . . , rn and the cost vector c. We call a tuple

〈f, r1, r2, . . . , rn〉 an ensemble. Given an ensemble E and cost vector c, we use RCP (E , c) to
denote the corresponding RCP.

In this work, we are interested in comparing the cost of an optimal solution to RCP (E , c)
against the cost of an optimal solution to some of its relaxations. In order to simplify things,
we work over the projection onto the s-space; the crucial property given by the structure of
RCP’s is that the projection of any solution onto the s-space has the same cost as the original
solution. We define P (E) as the projection of the feasible region of RCP (E , c) onto the s-space.
We also use PL(E) to denote the linear relaxation of P (E).

Intersection cuts. Let X be a closed convex set in Rm which: (i) contains f in its interior
and (ii) does not contain any integer point in its interior. The functional ψX : Rm → R is
defined as

ψX(r) = inf{λ > 0 : f +
r

λ
∈ X}. (1)

The inequality
∑n

j=1 ψX(rj)sj ≥ 1 is valid for P (E), since it is an intersection cut [2]. Moreover,
it was shown in [8] that all minimal inequalities of P (E) are of this form (for some X). Since
these inequalities are constructed based on convex sets in Rm, this gives a geometrical way of
analyzing P (E).

One important family of inequalities is derived from sets X which are ‘splits’, that is, X is
of the form {x : b1 ≤ ax ≤ b2}. We call them split cuts. The split closure of P (E), denoted by
S(E), is the intersection of all split cuts. We also consider cuts from simple splits, that is, splits
of the form {x : bbc ≤ eix ≤ dbe} where b ∈ R \ Z and ei is the ith canonical vector in Rm. We
denote the closure of these cuts by G(E). Finally, for the case m = 2, another important family
is when X is a triangle. The triangle closure is denoted by T (E).

Strength of relaxations. In [7] the authors showed a family of RCP’s whose split closure
gets arbitrarily weaker than the triangle closure. In their work, a ‘worst-case’ type of measure
is used to compare these two closures. Interestingly, split cuts for (IP) derived by taking into
account all integrality constraints actually perform very well in practice [4]. The apparent
strength of triangle cuts suggests that even stronger cuts for (IP) can be obtained from them.

Motivated by this observation, several authors recently started to test experimentally the
effectiveness of the triangle cuts [12, 3, 6, 10]. Despite some positive results obtained by Balas
and Qualizza in [3], the usefulness of the triangle cuts has been very far from those indicated
by theory.

However, it is still not clear if the disappointing performance of triangle cuts is due to
insufficient separation heuristics or is really an innate property of these cuts, although the
latter seems more likely. Our goal in this paper is to further explore the relative strength of the
split and triangle closure from a theoretical perspective.
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Our results. Informally, the results presented in this paper can be described as follows. We
consider two ways of comparing the closures P (E), G(E) and T (E). Roughly, in the ‘worst-cost’
measure we look at the direction where G(E) is weakest, while in the ‘average-cost’ measure
we take an average over all directions. We show that the strength of the split closure is very
dependent on which measure is used to perform the comparison.

First we consider the worst-cost measure and m = 2. We show that with reasonable prob-
ability the split closure of a random RCP is very weak when compared to the triangle closure.
This generalizes the bad examples from [7] and shows that they are not as pathological as
one could think. On the other hand, with respect to the average-case measure we show that,
with high probability, both the split and the triangle closure are very good approximations of
P (E). In particular, this shows that the split and the triangle closure are very similar under
the average-case measure. This gives a partial justification why triangle cuts seem to have a
similar performance to split cuts in practice.

Related work. Two recent papers address the fundamental question of comparing the strengths
of triangle and split cuts from a probabilistic point of view.

He et al. [14] use the same random model for generating RCP’s, but a different measure to
compare the strength of cuts, comparing the random coefficients of the inequalities induced by
the randomness of the rays. Their analysis does not consider the important triangles of Type
3. Although the results cannot be directly compared, their paper also indicates that split cuts
perform at least as well as some classes of triangles.

Del Pia et al. [15] base their analysis on the lattice width of the underlying convex set. They
show that the importance of triangle cuts generated from Type 2 triangles (the same family
which was considered in [7]) decreases with decreasing lattice width, on average. They also have
results for triangles of Type 3 and for quadrilaterals.

Our approach is very different from these two papers.

2 Preliminaries

Measures of strength. Let A and B be convex relaxations of P (E) such that A,B ⊆ Rn
+.

A closed, convex set X ⊆ Rn
+ is said to be of blocking type if y ≥ x ∈ X implies y ∈ X. It is

well-known that the recession cone of P (E) is Rn
+(see [9]) and hence P (E), A and B are convex

sets of blocking type. A traditional measure of strength for integer programs is the integrality
gap, which compares the ratio of the minimization over the IP and its linear relaxation. More
generally, we define the gap between A and B with respect to the cost vector c as:

gap(A,B, c) =
inf{cs : s ∈ A}
inf{cs : s ∈ B} . (2)

Notice that this value is greater than 1 if A is stronger than B. We define the gap to be +∞ if
A is empty or inf{cs : s ∈ B} = 0.

Based on this idea, we can define the worst-cost measure between the two relaxations A and
B as the worst possible gap over all non-negative cost vectors:

wc(A,B) = sup
c∈Rm

+

{gap(A,B, c)} (3)

= sup
c∈[0,1]m

{gap(A, B, c)} , (4)

where the second equation follows from the fact that the ratios are preserved under positive
scaling of the cost vectors. Note that for convex sets of blocking type, only non-negative cost
vectors have bounded optimum, hence we will restrict ourselves to this case.
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For any convex set X of blocking type, define αX = { x
α : x ∈ X}. An equivalent definition

for the worst-case measure used in [7] is the following: wc(A,B) is the amount that A has to
be “blown up” in order to contain B, namely wc(A,B) = inf{α : αA ⊇ B}. Therefore, if there
is any direction/cost where B is far away from A, the value of this measure becomes large. We
prove this equivalence in the Appendix in Lemma 10.

Now we define another (more robust) measure of strength which tries to capture the average
strength with respect to different costs. Consider a distribution C over vectors in Rm

+ . Then,
the average-cost measure between A and B is defined by

avg(A,B, C) = Ec∼C [gap(A,B, c)] . (5)

In the sequel we study the worst-cost and average-cost strength of the split and triangle
closures for random RCP’s. We define our model for random RCP’s next.

Random model. Let Dm
n denote the distribution of ensembles 〈f, r1, . . . , rn〉 where f is

picked uniformly from [0, 1]m and each of r1, . . . , rn is picked independently and uniformly at
random from the set of rational unit vectors in Rm. We make a note here that the rays in RCP
can be assumed to be unit vectors, by suitably scaling the cost coefficients. In other words,
given an ensemble E and a cost vectors c, there exists an ensemble E ′ and a cost vector c′

such that the optimal value of RCP(E , c) equals to the optimal value of RCP(E ′, c′). Moreover,
there exists an affine invertible affine transformation A : Rn → Rn such that P (E) = A(P (E ′)).
Appendix states these observations in the form we need in the paper and provides rigorous
proofs. Hence, in our model, we assume the rays are sampled from the set of rational unit
vectors. When the dimension is 2 we write Dn for the distribution, omitting the superscript.

3 Worst-cost measure in R2

The main result of this section is that, for a significant fraction of the RCP’s in the plane, S(E)
is significantly worse than T (E) based on the worst-cost measure.

Theorem 1. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(T (E), S(E)) ≥ α) ≥
[
1− 2

(
1− g(

β

4α
)
)n] [

1− β

α
− 1− β2

4α2

]
,

where

g(x) =
(

x

0.75− (2−√2)x
− x

1− (2−√2)x

)
.

Notice that this bound increases as n grows. In the limit n → ∞, and using the optimal
choice β → 0, the bound becomes 1/α − 1/4α2. To obtain an idea about the probabilities in
the above theorem, Table 1 presents the bound obtained for different values of n and α.

The way to prove this result is to consider a particular (deterministic) ensemble 〈f, r1, r2〉
which is ‘bad’ for the split closure and show that it appears with significant probability in a
random ensemble. We employ the following monotonicity property to transfer the ‘badness’ to
the whole RCP. The proof appears at the end of Appendix A.

Lemma 1. Consider an ensemble E = 〈f, r1, . . . , rn〉 and let E ′ = 〈f, ri1 , ri2 , . . . , rik〉 be a
subensemble of it. Then wc(T (E), S(E)) ≥ wc(T (E ′), S(E ′)).
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n α β Pr
100 1.5 0.37 25.7%
100 2 0.43 16.7%
500 2 0.16 33.6 %
500 3 0.22 21.3%
1000 2 0.01 37.7%
1000 3 0.14 25.0 %
1000 4 0.17 18.2 %
+∞ 2 0 43.75 %
+∞ 4 0 30.56 %

Table 1: Values of the bound of Theorem 1 for different values of n and approximation factor
α. The value of β in every entry was chosen empirically and attempts to optimize the bound.

3.1 A bad ensemble for the split closure

First, we introduce the following notation: Given a point f and a ray r, we say that f + r
crosses a region R ⊆ Rn if there is λ ≥ 0 such that f + λr ∈ R.

In this part we will focus on ensembles E = 〈f, r1, r2〉 where f ∈ (0, 1)2, and f +r1 and f +r2

cross the open segment connecting (0, 0) to (0, 1). The high-level idea is the following. Suppose
that r1 an r2 have x1-value equal to -1 and consider a lattice-free triangle T containing the points
f +r1 and f +r2, and also containing f in its interior. This triangle gives an inequality which is
at least as strong as s1+s2 ≥ 1, hence we have a lower bound of 1 for minimizing s1+s2 over the
triangle closure T (E). However, further assume that the angle between rays r1 and r2 is large.
Then we can see that any split that contains f in its interior will have a very large coefficient for
either s1 or s2. More specifically, suppose that there is a large M such that, for every inequality
ψ(r1)s1 + ψ(r2)s2 ≥ 1 coming from a split, we have max{ψ(r1), ψ(r2)} ≥ M . Then the point
(s1, s2) = (1/2M, 1/2M) satisfies every such inequality and hence is feasible for the split closure
S(E); this gives an upper bound of 2/M for minimizing s1 + s2 over the split closure. Then
using the choice of c = [1, 1] in the maximization in (3) gives wc(T (E), S(E)) ≥ M/2.

The following lemma is presented in Section 5.6.2 of [5] and formalizes the observation that
if r1 and r2 are spread out then the split closure is weak. The proof is included in Appendix B.

Lemma 2. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2, r1 = c1(−1, t1)
and r2 = c2(−1, t2) with c1, c2 ≥ 0 and t1 ≥ t2. Moreover, assume that both f + r1 and f + r2

cross the left facet of the unit square. Then

min{c1s1 + c2s2 : (s1, s2) ∈ S(E)} ≤ f1(t1 − t2) + 1
t1 − t2

.

Corollary 1. Let E as in the previous lemma. Then

min{c1s1 + c2s2 : (s1, s2) ∈ S(E)} ≤ 2
t1 − t2

.

This corollary follows by applying the next simple geometric fact to Lemma 2.

Lemma 3. Consider a point f = (f1, f2) ∈ (0, 1)2 and rays r1 = (−1, t1) and r2 = (−1, t2),
with t1 ≥ t2. If f + r1 and f + r2 cross the left facet of the unit square then f1(t1 − t2) ≤ 1.
Moreover, f1(t1 − t2) = 1 iff f + r1 crosses (0, 1) and f + r2 crosses (0, 0).

Proof. First notice that f + f1r
1 = (0, f2 + f1t1) and using the crossing property we get that

f2 + f1t1 ≤ 1. Similarly, f + f1r
2 = (0, f2 + f1t2), hence f2 + f1t2 ≥ 0. Isolating f2 in both
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inequalities and chaining them we obtain f1(t1− t2) ≤ 1, obtaining the first part of the lemma.
The second part follows from the fact that all the previous inequalities hold with equality iff
f + r1 crosses (0, 1) and f + r2 crosses (0, 0).

Using Corollary 1 we establish the main lemma of this section, which exhibits bad ensembles
for the split closure.

Lemma 4. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2. Suppose that
f + r1 crosses the open segment connecting (0, 1− ε) and (0, 1) and that f + r2 crosses the open
segment connecting (0, 0) and (0, ε), for some 0 < ε < 1. Then wc(T (E), S(E)) ≥ (1− 2ε)/2f1.

Proof. Let v1 = (−1, t1), v2 = (−1, t2) and let c1, c2 ≥ 0 be such that r1 = c1v
1 and r2 = c2v

2.
By the assumptions on the rays, we have t1 ≥ t2.

Consider the rays v1 = (−1, t1) and v2 = (−1, t2) such that f + v1 crosses (0, 1 − ε) and
f + v2 crosses (0, ε).

Notice that t1 ≥ t1 ≥ t2 ≥ t2, implying that t1 − t2 ≥ t1 − t2. Moreover, using similarity of
triangles we obtain that t1 − t2 = 1−2ε

f1
. Therefore, t1 − t2 ≥ (1− 2ε)/f1.

Employing Corollary 1 over E ′ gives min{c1s1 + c2s2 : (s1, s2) ∈ S(E ′)} ≤ 2f1/(1 − 2ε). In
contrast, min{c1s1+c2s2 : (s1, s2) ∈ T (E ′)} ≥ 1, because of the inequality c1s1+c2s2 ≥ 1 derived
from the lattice-free triangle with vertices f + v1, f + v2 and f − (γ, 0) for some γ > 0. Notice
that such γ exists because f +v1 and f +v2 do not cross the points (0, 1) and (0, 0) respectively.
Using the cost vector c = [c1, c2], we obtain the desired bound wc(T (E), S(E)) ≥ (1−2ε)/2f1.

3.2 Probability of bad ensembles

Using the ensemble constructed in the previous section and the monotonicity property from
Lemma 1, we now analyze the probability that a random ensemble E ∼ Dn is bad for the split
closure. Let ∆ denote the triangle in R2 with vertices (0, 0), (0, 1), (1/2, 1/2).

Lemma 5. Let E = 〈f, r1, . . . , rn〉 be a random ensemble from Dn, where f = (f1, f2). Then
for all f̄ = (f̄1, f̄2) ∈ ∆ and all ε ∈ (0, 1/2), we have

Pr
(

wc(T (E), S(E)) ≥ 1− 2ε

f̄1

∣∣∣f = f̄

)
≥ 1− 2

(
1− g(f̄1)

)n
,

where

g(x) =
(

x

1− ε− (2−√2)x
− x

1− (2−√2)x

)
.

Proof. Let us call portals the open segment connecting (0, 1−ε) and (0, 1) and the open segment
connecting (0, ε) and (0, 0). Due to Lemmas 1 and 4 it suffices to lower bound the probability
that a random ensemble has rays ri and rj such that f +ri crosses one portal and f +rj crosses
the other portal.

Consider a ray ri; the probability that f + ri crosses the open segment connecting (0, 1− ε)
and (0, 1) equals to θ/2π, where θ is the angle between the vectors (0, 1− ε)− f̄ and (0, 1)− f̄ .
So we have

θ = arctan
(

1− f̄2

f̄1

)
− arctan

(
1− ε− f̄2

f̄1

)
. (6)

Recall that arctan(.) is concave in R+. This implies that (6) is minimized when f̄2 is
minimum. Since f̄ ∈ ∆, f̄2 ≥ f̄1 and hence we have

θ ≥ arctan
(

1− f̄1

f̄1

)
− arctan

(
1− ε− f̄1

f̄1

)
. (7)
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In order to simplify the previous bound we integrate arctan and notice that its derivative can
be bounded as 1/(x2 + 1) ≥ 1/(x +

√
2− 1)2 for all x ∈ [1,∞). Thus:

θ ≥ arctan
(

1− f̄1

f̄1

)
− arctan

(
1− ε− f̄1

f̄1

)
=

∫ 1−f̄1
f̄1

1−ε−f̄1
f̄1

1
x2 + 1

≥
∫ 1−f̄1

f̄1

1−ε−f̄1
f̄1

1
(x +

√
2− 1)2

= − 1
x +

√
2− 1

∣∣∣
1−f̄1

f̄1
1−ε−f̄1

f̄1

=
(

f̄1

1− ε− (2−√2)f̄1

− f̄1

1− (2−√2)f̄1

)
= g(f̄1).

Therefore, the probability that f̄ + ri crosses the open segment connecting (0, 1 − ε) and
(0, 1) is at least g(f̄1). By symmetry, we can also prove that the probability that f̄ + ri crosses
the open segment connecting (0, ε) and (0, 0) is also at least g(f̄1); this bounds also holds for
this case because it is independent of f̄2.

Let B1 denote the event that no ray of E crosses the open segment connecting (0, 1 − ε)
and (0, 1) and let B2 denote the even that no ray of E crosses the open segment connecting
(0, ε) and (0, 0). Using our previous bound we obtain that Pr(B1) ≤ (1− g(f̄1))n, and the same
lower bound holds for Pr(B2). Notice that the probability that E has rays ri and rj such that
f + ri and f + rj cross distinct portals is 1− Pr(B1 ∨ B2); from union bound we get that this
probability is at least 1− 2(1− g(f̄1))n. This concludes the proof of the lemma.

3.3 Proof of Theorem 1

In order to conclude the proof of Theorem 1 we need to remove the conditioning in the previous
lemma. To make progress towards this goal, for t ∈ [0, 1/2] let ∆t = ∆ ∩ {(x1, x2) : x1 ≤ t}. It
is easy to see that the area of ∆t equals (1− t)t. Now it is useful to focus on the set ∆t \∆βt, for
some β ∈ [0, 1], since we can bound the probability that a uniform point lies in it and Lemma 5
is still meaningful. Using the independence properties of the distribution Dn we get that for
every β ∈ [0, 1] and ε ∈ (0, 1/2) a random ensemble E = 〈f, r1, . . . , rn〉 ∼ Dn satisfies:

Pr
(

wc(T (E), S(E)) ≥ 1− 2ε

2t

∣∣∣f ∈ ∆
)

≥ Pr
(

wc(T (E), S(E)) ≥ 1− 2ε

2t

∣∣∣f ∈ ∆t \∆βt

)
Pr

(
f ∈ ∆t \∆βt

∣∣∣f ∈ ∆
)

≥ [1− 2 (1− g (βt))n] · 4 · [(1− t)t− (1− βt)βt] ,

where the first inequality follows from the fact that ∆t \ ∆βt ⊆ ∆ and the second inequality
follows from the fact that βt ≤ f1 ≤ t and that the function g(x) is increasing in x.

Finally, notice that this bound holds for all four 90-degree rotations of ∆ around the point
(1/2, 1/2); this is because of the symmetries of Dn. Thus, by law of total probability we can
remove the last conditioning. Using ε = 1/4 and α = 1/4t we then obtain Theorem 1. We
remark that we fixed the value of ε in order to simplify the expression in the theorem and that
the value 1/4 was chosen experimentally in order to obtain good bounds specially for reasonably
small values of n.

Since T (E) is a relaxation of P (E), as a corollary of the theorem we obtain a bound on the
probability that the split closure is bad for random RCP’s.

Corollary 2. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(P (E), S(E)) ≥ α) ≥
[
1− 2

(
1− g(

β

4α
)
)n] [

1− β

α
− 1− β2

4α2

]
,

7



where

g(x) =
(

x

0.75− (2−√2)x
− x

1− (2−√2)x

)
.

4 Average-case measure

For ε > 0 we define the product distribution Pε over [ε, 1]n where a vector is obtained by
taking each of its n coefficients independently uniformly in [ε, 1]. In this section we show that
avg(P (E), G(E),Pε) is small for most ensembles E in Dm

n .

Theorem 2. Fix reals ε > 0 and α > 1 and an integer m > 0. Then for large enough n,

Pr
E∼Dm

n

(avg(P (E), G(E),Pε) ≤ α) ≥ 1− 1
n

.

We remark that the property that the cost vector is bounded away from zero in every
coordinate is crucial in our analysis. This is needed because the ratio in (2) can become ill-
defined in the presence of rays of zero cost.

The high level idea for proving the theorem is the following. Consider an ensemble E =
〈f, r1, . . . , rn〉. Define f̂ as the integral point closest to f in l2 norm. It is not difficult to see
that for every c ∈ Pε, min{cs : s ∈ P (E)} is lower bounded by ε|f̂ − f |, and this is achieved
when the ensemble has the ray (f̂ − f)/|f̂ − f | with cost ε. We prove that this lower bound also
holds for minimizing over G(E) instead of P (E). In addition, we show that for most ensembles
E , there are enough rays similar to f̂ − f that have small cost. This allows us to upper bound
min{cs : s ∈ P (E)} by roughly ε|f̂−f | for most of the ensembles, which gives the desired result.

We start by proving the upper bound. For that, we need to study a specific subset of the
ensembles in Dm

n . We remark that the bounds presented are not optimized and were simplified
in order to allow a clearer presentation.

4.1 (β, k)-good ensembles

Consider an ensemble E = 〈f, r1, . . . , rn〉. At a high level, we consider special regions in Rm

‘around’ f − f̂ , whose size depends on a parameter β > 0; then an ensemble is (β, k)-good if it
has at least k rays in each of these regions.

To make this precise, let Sm−1 denote the (m − 1)-dimensional unit sphere in Rm. Define
t

.= f̂ − f and let ρ be a rotation of Rm which maps t/|t| into em. Let C̄(β) be the cap of the
hypersphere Sm−1 consisting of all unit vectors with dot product at least β with em. We also
define H+

i as the halfspace given by {x ∈ Rm : xi ≥ 0} and H−
i = {x ∈ Rm : xi ≤ 0}. We

use the halfspaces H+
i and H−

i to partition C̄(β) into 2m−1 parts. That is, for I ⊆ [m − 1],
let C̄I(β) = C̄(β) ∩ (

⋂
i∈I H+

i ) ∩ (
⋂

i∈[m−1]\I H−
i ). Finally, let C(β) = ρ−1C̄(β) and CI(β) =

ρ−1C̄I(β), that is, the sets obtained by applying the inverse rotation ρ−1.
Using these structures, we say that E is (β, k)-good if for every I ⊆ [m − 1] there are at

least k rays ri in CI(β). The main property of such ensembles is that they allow us to use the
following lemma.

Lemma 6. Let R be a subset of the rays of E such that R ∩ CI(β) 6= ∅ for all I ⊆ [m − 1].
Then there is a solution s ∈ P (E) supported in R such that

∑n
i=1 si ≤ |t|

β .

Proof. Without loss of generality assume that R ∩C(β) = {r1, r2, . . . , rn′}. First we show that
t ∈ cone(R∩C(β)). This follows from Farkas’ Lemma and the hypothesis R∩CI(β) 6= ∅ for all
I ⊆ [m− 1]; the proof is deferred to the appendix.
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Claim 1. t ∈ cone(R ∩ C(β)).

So consider s1, s2, . . . , sn′ ≥ 0 with
∑n′

i=1 sir
i = t. We claim that

∑n′
i=1 si ≤ |t|/β. To

see this, first notice that by definition of C(β) we have r(t/|t|) ≥ β for all r ∈ C(β). Then
multiplying the equation

∑n′
i=1 sir

i = t by t gives
∑n′

i=1 siβ|t| ≤
∑n′

i=1 sir
it = tt = |t|2 and the

claim follows.
Since f + t = f̂ is integral we obtain that s is a feasible solution for P (E). This concludes

the proof of the lemma.

Using this lemma we can prove an upper bound on optimizing a cost vector in Pε over P (E).

Lemma 7. Fix β, ε > 0 and an integer k ≥ 0. Consider a (β, k)-good ensemble E and let
z(c) = min{cs : s ∈ P (E)}. Then

Ec∼Pε [z(c)] ≤ |t|
(

p
ε

β2
+ (1− p)

1
β

)
,

where

p = 1− 2m−1

(
1− ε/β

1− ε

)k

.

Proof. Consider a vector c which satisfies the following property: (*) for each I ⊆ [m− 1] there
is a ray in CI(β) which has cost w.r.t c at most ε/β. Then employing Lemma 6 we obtain that
z(c) ≤ |t|ε/β2. Similarly, for a general vector c ∈ [ε, 1]m we have the bound z(c) ≤ |t|/β.

Now consider a vector c ∼ Pε. For a fixed I, the probability that every ray in E ∩CI(β) has
cost greater than ε/β is at most ((1− ε/β)/(1− ε))k. By union bound, c satisfies property (*)
with probability at least

1− 2m−1

(
1− ε/β

1− ε

)k

.

The lemma then follows by employing the bounds on z(c).

4.2 Probability of obtaining a (β, k)-good ensemble

In this section we estimate the probability that a random ensemble in Dm
n is (β, k)-good. In

order to simplify the presentation, we actually present a bound only for the specific value of k
chosen in hindsight to be equal to

k̄
.= n

area(C̄∅(β))
area(Sm−1)

−
√

n(lnn + m− 1)
2

. (8)

Furthermore, we assume that β, n and m are such that k̄ ≥ 0.
Consider a random ensemble E = 〈f, r1, . . . , rn〉 from Dm

n and let R denote the set of rays
of E . We have that

Pr
(E is (β, k̄)-good

)
= Pr


 ∧

I⊆[m−1]

|R ∩ CI(β)| ≥ k̄


 ≥ 1− 2m−1 Pr

(|R ∩ C̄∅(β)| < k̄
)
, (9)

where the last inequality follows from the union bound and the fact that, by symmetry,
Pr

(|R ∩ CI(β)| < k̄
)

is the same as Pr
(|R ∩ C̄∅(β)| < k̄

)
for every I ⊆ [m− 1].

Due to the independence of the rays, |R∩C̄∅(β)| behaves as a sum of n 0/1 random variables
which take value 1 with probability area(C̄∅(β))/area(Sm−1). At this point we recall the
additive Chernoff bound on the tail of such distributions.
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Theorem 3 (Theorem 1.1 of [11]). Let X =
∑n

i=1 Xi, where Xi are random variables indepen-
dently distributed in [0, 1]. Then for all t > 0

Pr(X < E[X]− t) ≤ e−2t2/n.

By linearity of expectation we obtain that E[|R ∩ C̄∅(β)|] = n(area(C̄∅(β))/area(Sm−1)),
hence employing the previous bound with t =

√
n(lnn + m− 1)/2 we obtain that

Pr
(|R ∩ C̄∅(β)| < k̄

) ≤ 1
nem−1

.

This upper bound together with inequality (9) gives that E is (β, k̄)-good with high probability.

Lemma 8. Consider a random ensemble E ∼ Dm
n and let k̄ be defined as in (8). If k̄ ≥ 0, then

Pr
(E is (β, k̄)-good

) ≥ 1− 1
n

.

4.3 Lower bound for simple splits

In this section we show that ε|t| is also a lower bound for optimizing any vector in [ε, 1]n over
G(E).

Lemma 9. Fix ε > 0 and consider an ensemble E in Dm
n and a vector c ∈ [ε, 1]n. For t defined

as before, we have
min{cs : s ∈ G(E)} ≥ ε|t|.

Proof. To prove this lemma, let Si ≡
∑n

j=1 ψi(rj)sj ≥ 1 be the inequality for P (E) obtained
from the simple split {x : 0 ≤ xi ≤ 1}. Clearly Si is valid for G(E). Using the definition of
Minkowski’s functional, it is not difficult to see that

ψi(rj) =
rj
i

[rj
i ≥ 0]− fi

,

where [rj
i ≥ 0] is the function that is equal to 1 if rj

i ≥ 0 and equal to 0 otherwise.
Now consider the inequality

∑n
j=1 ψ(rj)sj ≥ 1 where

ψ(rj) =
∑m

i=1(f̂i − fi)2ψi(rj)∑m
i=1(f̂i − fi)2

.

This inequality is a non-negative combination of the inequalities Si and therefore is valid for
G(E). We claim that for any c ∈ [ε, 1]m, min{cs :

∑n
j=1 ψ(rj)sj ≥ 1} ≥ ε|t|, which will give the

desired lower bound on optimizing c over G(E).
To prove the claim recall that

∑m
i=1(f̂i − fi)2 = |t|2 and notice that

ψ(rj) =
1
|t|2

m∑

i=1

(f̂i − fi)2ψi(rj) =
1
|t|2

m∑

i=1

(f̂i − fi)2r
j
i

[rj
i ≥ 0]− fi

.

Employing the Cauchy-Schwarz inequality and using the fact that |rj | = 1, we get

ψ(rj) ≤ 1
|t|2 |r

j |

√√√√ m∑

i=1

(
(f̂i − fi)2

[rj
i ≥ 0]− fi

)2

≤ 1
|t|2

√√√√
m∑

i=1

(f̂i − fi)4

([rj
i ≥ 0]− fi)2

.

However, since f̂ is the integral point closest to f , for all i it holds that (f̂i − fi)2 ≤ ([rj
i ≥

0] − fi)2. Employing this observation on the previous displayed inequality gives ψ(rj) ≤ 1/|t|.
Therefore, any s satisfying

∑n
j=1 ψ(rj)sj ≥ 1 also satisfies

∑n
j=1 sj ≥ |t|. The claim then follows

from the fact that every coordinate of c is lower bounded by ε. This concludes the proof of
Lemma 9.

10



4.4 Proof of Theorem 2

Recall that ε, α and m are fixed. Let β be the minimum between
√

2/α and a positive constant
strictly less than 1; this guarantees that C̄∅(β) > 0. Consider a large enough positive integer
n. Let E be a (β, k̄)-good ensemble in Dm

n , where k̄ is defined as in (8). Notice that k̄, as a
function of n, has asymptotic behavior Ω(n). We assume that n is large enough so that k̄ > 0.

Now let us consider Lemma 7 with k = k̄. The value p defined in this lemma is also function
of n, now with asymptotic behavior 1 − o(1). Thus, if n is chosen sufficiently large we get
1 − p ≤ εβα/2 and hence Ec∼Pε [z(c)] ≤ |t|εα. If in addition we use the lower bound from
Lemma 9, we obtain that avg(P (E), G(E),Pε) ≤ α. The theorem then follows from the fact
that an ensemble in Dm

n is (β, k̄)-good with probability at least 1− 1/n, according to Lemma 8.

5 Implications for the mixed integer case

In this section we consider the mixed integer model obtained from (RCP) by introducing integral
‘non-basic’ variables. That is we consider IP’s of the form

min c1s + c2y

x = f +
n∑

j=1

rjsj +
p∑

j=1

qjyj

x ∈ Zm (MG)
s ≥ 0

y ∈ Zp
+

As RCP’s arise as relaxations for IP’s in tableaux form, the above IP also appears in the
same context and offers a possibly much tighter relaxation since it only relaxes possible non-
negativity constraints of basic variables. Our goal is to understand how the results from the
previous section carry over to this model.

The IP (MG) is completely defined by a cost vector c and a tuple E = 〈f, r1, . . . , rn, y1, . . . , yq〉.
With some overload in the notation we also call such tuple an ensemble. Given an ensemble
E and a cost vector c, we use MG(E , c) to denote the associated mixed-integer program. As
before, we work on the space of the ‘non-basic’ variables, hence we define P̃ (E) as the projection
of the feasible region of MG(E , c) onto the s, y-space.

The random model for RCP’s can be extended naturally for these mixed integer programs.
That is, define the distribution D̃m

n,p over ensembles where f is picked uniformly from [0, 1]m and
each of the rays r1, . . . , rn, y1, . . . , yq is picked independently and uniformly at random from the
set of rational unit vectors in Rm. Similarly, we define the cost distribution P̃ε where a vector
in [ε, 1]n+p is obtained by selecting each coefficient independently uniformly in [ε, 1].

Again our goal is to study the strength of simple split cuts for these random mixed integer
programs. The (unstrengthened) extension of split cuts to MG’s is also direct: given a split X
in Rm, its associated split cuts is

∑n
j=1 ψX(rj)sj +

∑p
j=1 ψX(qj)yj ≥ 1, where ψX is defined in

(1). It is easy to see that such inequality is valid for P̃ (E), since it is in fact valid for the set of
solutions when the integrality constraints on the ‘non-basic’ variables are dropped. The simple
split cut of MG(E), denoted by G̃(E), is defined as the intersection of all simple split cuts.

With definitions at hand, we extend Theorem 2 for MG’s. The proof is a fairly direct
modification of the proof of Theorem 2. We give it in the appendix.
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Theorem 4. Fix reals ε > 0 and α > 1 and positive integers m and p. Then for n sufficiently
larger than m,

Pr
E∼D̃m

n,p

(
avg(P̃ (E), G̃(E), P̃ε) ≤ α

)
≥ 1− 1

n
.
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Appendix

A Some properties of the worst-cost

Consider a closed convex set P = {x ∈ Rn
+ : aix ≥ bi ∀i ∈ I} (we include sets where the index

set I may not be finite). The definition of αP implies that αP = {x ∈ Rn
+ : αaix ≥ bi ∀i ∈ I};

we also define ∞P = Rn
+. Moreover, P is of blocking type if and only if ai ≥ 0 and bi > 0 for

all i ∈ I.
The next lemma establishes the connection between the above definitions and the worst-cost

measure.

Lemma 10. Consider two sets P ⊆ Q of blocking type. Then

wc(P,Q) = inf{α : Q ⊆ αP}.

Proof. Let α∗ = wc(P,Q).
(≥) If α∗ = ∞ then the inequality is obvious, so suppose α∗ < ∞. Let ax ≥ b be a valid

inequality for P with a ≥ 0 and b > 0. Then

inf{ax : x ∈ P}
inf{ax : x ∈ Q} ≤ α∗.

Notice that both terms in the ratio of the LHS are nonzero, thus the last expression implies
that for any q ∈ Q

aq ≥ inf{ax : x ∈ Q} ≥ inf{ax : x ∈ P}
α∗

≥ b

α∗
,

where the last inequality follows from the fact ax ≥ b is valid for P . Consequently, α∗aq ≥ b
and since this holds for every supporting inequality of P we get Q ⊆ α∗P . This further implies
that α∗ = wc(P, Q) ≥ inf{α : Q ⊆ αP}.

(≤) Notice that gap(P, Q, c) as a function of c from [0, 1]n to R ∪ ∞ is upper semicontin-
uous, that is, for every c ∈ [0, 1]n and every ε > 0 there is a neighborhood U of c such that
gap(P, Q, c′) ≤ gap(P, Q, c) + ε for every c′ ∈ U . To see this, notice that the required condition
holds trivially for points c ∈ [0, 1]n where gap(P, Q, c) = ∞ and it also holds for all c ∈ [0, 1]n

where gap(P, Q, c) < ∞ due to continuity at those points. Therefore, since [0, 1]n is a compact
set, by Weierstrass’ theorem there exists a ∈ [0, 1]n such that α∗ = gap(P,Q, a).

If inf{α : Q ⊆ αP} = ∞ then again the inequality holds trivially, so we assume that this
quantity is finite. In particular, this implies that P is non-empty. Using these two observations,
let α′ < ∞ be such that Q ⊆ α′P and let b = inf{ax : x ∈ P}. Since ax ≥ b is a valid inequality
for P , α′ax ≥ b is valid for α′P and by the definition of α′ it is satisfied by every x ∈ Q.
Consequently:

[
inf{α′ax : x ∈ Q} ≥ b

] ≡ [
α′{inf ax : x ∈ Q} ≥ b

] ⇒ α′ ≥ b

inf{ax : x ∈ Q} = α∗,

where the last equation follows from α∗ = gap(P, Q, a). Taking the infimum over all α′’s gives
the desired result.

Given a set P = {(x, y) ∈ Rk × Rn−k : āix + âiy ≥ bi ∀i ∈ I}, the truncation of P to its
first k coordinates is defined as Pk = {x : āix ≥ bi ∀i ∈ I}; alternatively, Pk = {x : (x, 0) ∈ P}.
The next lemma shows that the worst-cost measure cannot increase when truncating.
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Lemma 11. Consider two sets P ⊇ Q of blocking type. Then for any k ≤ n

wc(P, Q) ≥ wc(Pk, Qk).

Proof. To simplify the notation, let wc(P, Q) = α. Also let P = {(x, y) ∈ Rk×Rn−k : āix+âiy ≥
bi ∀i ∈ I}. Notice that Pk and Qk are of blocking type.

Lemma 10 gives that Q ⊆ αP . We claim that this implies that Qk ⊆ αPk. To see this,
consider q ∈ Qk. Since (q, 0) ∈ Q ⊆ αP , for every i ∈ I we have α(āiq+âi0) ≥ bi, or equivalently
αāiq ≥ bi; the claim then holds. Again employing Lemma 10, we have that wc(Pk, Qk) ≤ α and
the result follows.

Proof of Lemma 1. In order to simplify the notation, we assume without loss of generality that
E ′ = 〈f, r1, r2, . . . , rk〉.

Consider T (E) and recall that it is defined as {s :
∑n

i=1 ψT (ri) ≥ 1 ∀T ∈ T }, where T
is the set of all triangles in R2 that contain f but no integral point in their interior. Since
ψT ≥ 0, it follows that T (E) is of blocking type. Using again its definition, we have that
T (E ′) = {s :

∑k
i=1 ψT (ri) ≥ 1 ∀T ∈ T }, and therefore T (E ′) = T (E)k. The same argument can

be used to show that S(E ′) = S(E)k as well. Then employing Lemma 11 we obtain the desired
result wc(T (E), S(E)) ≥ wc(T (E ′), S(E ′)).

B Proof of Lemma 2

A key step in the proof of Lemma 2 is a method for constructing a polyhedron contained in the
split closure. We minimize the function c1s1 + c2s2 over this strengthening of the split closure.
The resulting LP implies an upper bound on the objective value when minimizing the function
over the split closure.

To obtain this polyhderon, we define some inequalities which dominate the split closure
S(E). A pseudo-split is the convex set between two distinct parallel lines passing through (0, 0)
and (0, 1) respectively. The direction of the lines, called direction of the pseudo-split, is a
parameter.The pseudo-split inequality is derived from a pseudo-split exactly in the same way
as from any maximal lattice-free convex set using formula (1). Note that pseudo-splits are in
general not lattice-free and hence do not generate valid inequalities for RCP (E , c). However,
we can dominate any split inequality cutting f by an inequality derived from these convex sets.
Indeed, consider any split S containing the fractional point f in its interior and passing through
the segment joining (0, 0) and (0, 1). The pseudo-split with direction identical to the direction of
S generates an inequality that dominates the split inequality derived from S, as the coefficient
for any ray is smaller in the pseudo-split inequality. The condition imposed on the rays to cross
the left facet of the unit square implies the following. Any split which contains f , but does not
pass through the segment (0, 0), (0, 1), is dominated by any pseudo-split passing through the
segment joining (0, 0) and (0, 1). So to dominate the split closure in this case, we only need to
consider the inequalities derived from the pseudo-splits.

The next lemma states that we can dominate the split closure by using only the inequalities
generated by the pseudo-splits with direction parallel to the rays r1, r2.

Lemma 12. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2, r1 = c1(−1, t1)
and r2 = c2(−1, t2) with c1, c2 ≥ 0 and t1 ≥ t2, such that both f + r1 and f + r2 cross the
segment joining (0, 0) and (0, 1). Then any pseudo-split inequality is dominated by the convex
combination of the two pseudo-splits parallel to r1, r2.

Proof. Let the pseudo-split parallel to r1 be denoted by S1 and similarly the pseudo-split parallel
to r2 be S2. Consider any other pseudo split S′. Consider the point f̄ on the segment joining
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(0, 0) and (0, 1) be such that the segment joining f and f̄ is parallel to the direction of S′. Let
Ē be the ensemble 〈f̄ , r1, r2〉. We compare the inequalities generated by the convex set S′ using
the formula (1) for P (E) and P (Ē). Let ψX(ri) be the coefficeint for ri in P (E) and ψ̄X(ri) be
the coefficient for ri in P (Ē) with respect to the convex set X.

Observation 1. ψS′(ri) = ψ̄S′(ri) for i = 1, 2 since the distance cut by S′ on the rays r1, r2

does not change in the two ensembles.

Observation 2. ψS1(r
i) ≥ ψ̄s1(r

i). This is because the coefficient for r1 remains 0 and the
distance cut by S1 on r2 is more in ensemble E as compared to in ensemble Ē. By a similar
argument, ψS2(r

i) ≥ ψ̄s2(r
i) : the coefficient for r2 remains 0 and the distance cut off on r1 is

more in E compared to Ē.
We now make the following claim.

Claim 2. There exists 0 ≤ λ ≤ 1 such that ψ̄S′(ri) = λψ̄S1(ri) + (1− λ)ψ̄S2(ri) for i = 1, 2.

Proof. We first note that ψ̄Si(r
i) = 0 for i = 1, 2. This implies it suffices to show that ψ̄S′ (r

2)

ψ̄S1 (r2)
+

ψ̄S′ (r
1)

ψ̄S2 (r1)
= 1. Indeed, we can then pick λ = ψ̄S′ (r

2)

ψ̄S1 (r2)
. We use similarity of triangles to establish

that ψ̄S′ (r
2)

ψ̄S1 (r2)
+ ψ̄S′ (r

1)

ψ̄S2 (r1)
= 1. Refer to Figure 1 for the following notation. In the figure, ray r2

is extended back to intersect S1 at D and S′ at E. Note that ψ̄S′ (r
2)

ψ̄S1 (r2)
is equal to Ff/Gf . By

similarity of triangles, Ff/Gf = Df/Ef = AC/AE. Also, ψ̄S′ (r
1)

ψ̄S2(r1)
is equal to Bf/Af = CD/Af

and by similarity of triangles, CD/Af = CE/AE. Since, AC/AE + CE/AE = 1, we have our
identity.

f

A

B

C

D

E

F

G

S1

S2

S ′

r1

r2

Figure 1: Figure for proof of Claim 2

Now combining Claim 2 and Observations 1 and 2, we obtain that the inequality ψS′(r1)s1+
ψS′(r2) ≤ 1 is dominated by the convex combination of the two inequalities ψS1(r

1)s1+ψS1(r
2) ≤

1 and ψS2(r
1)s1 + ψS2(r

2) ≤ 1 defined by λ from Claim 2.

We have thus shown that we need to consider the following LP to bound min{c1s1 + c2s2 :
(s1, s2) ∈ S(E)} from above.
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min c1s1 + c2s2

ψS1(r
1)s1 + ψS1(r

2)s2 ≥ 1
ψS2(r

1)s1 + ψS2(r
2)s2 ≥ 1

s ∈ R2
+.

(10)

We can derive the constraints corresponding to S1, S2. We have then to find an upper bound
on the value of the following LP.

min s1 + s2

0 · s1 +
c2(t1 − t2)
f2 + f1t1

s2 ≥ 1

c1(t1 − t2)
1− f2 − f1t2

s1 + 0 · s2 ≥ 1

s ∈ R2
+ .

(11)

The upper bound can be obtained by exhibiting a feasible solution :

s1 =
1− f2 − f1t2
c1(t1 − t2)

and s2 =
f2 + f1t1
c2(t1 − t2)

.

The value of this feasible solution is

c1s1 + c2s2 =
1 + f1(t1 − t2)

t1 − t2
.

C Proof of Claim 1 in Lemma 6

First we need a preliminary lemma.

Lemma 13. Let R′ ⊆ C̄(β) be such that R′∩C̄I(β) 6= ∅ for all I ⊆ [m−1]. Then em ∈ cone(R′).

Proof. Consider a vector a ∈ Rm such that ar ≥ 0 for all r ∈ R′; we claim that am ≥ 0. To
see this, consider the set of indices I = {i ∈ [m − 1] : ai < 0}. Making use of our hypothesis,
there is r′ ∈ R′∩ C̄I(β), which then satisfies

∑
i∈I air

′
i +

∑
i∈[m−1]\I air

′
i ≤ 0. Since ar′ ≥ 0, this

implies that amr′m ≥ 0. Finally, since r′em ≥ β > 0, we obtain that r′m > 0 and hence am ≥ 0.
From Farkas’ Lemma em ∈ cone(R′) iff there is no vector with amr ≥ 0 for all r ∈ R′ and

am < 0, so the result follows from the previous claim.

In order to prove Claim 1 we can proceed as follows. Letting R′ .= ρR, the definition
of R and the fact that C̄I(β) = ρCI(β) implies that R′ ∩ C̄I(β) 6= ∅ for all I ⊆ [m − 1].
Then Lemma 13 implies that em ∈ cone(R′). Since ρ−1 is a linear transformation, we have
t = ρ−1em ∈ ρ−1(cone(R′)) = cone(R).

D Proof of Theorem 4

As in the proof of Theorem 2, we need an upper bound on z(c) = min{cs : s ∈ P̃ (E)} and a
lower bound on min{cs : s ∈ G̃(E)}.

For the upper bound, we consider solutions of (MG) with y = 0. We are now back to a
problem of the form (RCP). We say that a tuple E = 〈f, r1, . . . , rn, y1, . . . , yq〉 is (β, k)-good if
the ensemble 〈f, r1, . . . , rn〉 is (β, k)-good as defined in Section 4.1. We can apply Lemmas 6-8
to (β, k)-good tuples E .

For the lower bound, we consider solutions of (MG) with y ∈ Rp
+. We are now back to a

problem of the form (RCP) with n + p continuous variables. Applying Lemma 9, we get
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Lemma 14. Fix ε > 0 and consider an ensemble E in D̃m
n,p and a vector (c1, c2) ∈ [ε, 1]n+p.

For t = f̂ − f , we have
min{c1s + c2y : (s, y) ∈ G̃(E)} ≥ ε|t|.

The proof of Theorem 4 now follows the proof of Theorem 2:
Let β be the minimum between

√
2/α and a positive constant strictly less than 1; this

guarantees that C̄∅(β) > 0. Consider a large enough positive integer n. Let E be a (β, k̄)-good
tuple in D̃m

n+p, where k̄ is defined as in (8). Notice that k̄, as a function of n, has asymptotic
behavior Ω(n). We assume that n is large enough so that k̄ > 0.

Now let us consider Lemma 7 with k = k̄. The value p defined in this lemma is also function
of n, now with asymptotic behavior 1 − o(1). Thus, if n is chosen sufficiently large we get
1 − p ≤ εβα/2 and hence Ec∼P̃ε

[z(c)] ≤ |t|εα. If in addition we use the lower bound from
Lemma 14, we obtain that avg(P̃ (E), G̃(E), P̃ε) ≤ α. The theorem then follows from the fact
that a tuple in D̃m

n+p is (β, k̄)-good with probability at least 1− 1/n, according to Lemma 8.
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