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Abstract

A filter oracle for a clutter consists of a finite set V and an oracle which, given any set X ⊆ V ,

decides in unit time whether X contains a member of the clutter. Let A2n be an algorithm that,

given any clutter C over 2n elements via a filter oracle, decides whether C is ideal. We prove that

in the worst case, A2n makes at least 2n−1 calls to the filter oracle. Our proof uses the theory of

cuboids.
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Background Let V be a finite set, and C a family of subsets of V , called members. C is a clutter

over ground set V if no member contains another one [9]. C is ideal if the set covering polyhedron{
x ∈ RV :

∑
u∈C xu ≥ 1 ∀C ∈ C;x ≥ 0

}
is integral. The terminology was coined in [6]. However,

the notion goes back to a 1963 manuscript wherein Alfred Lehman extended the width-length inequal-

ity of Moore and Shannon [13] and Duffin [8] for two-terminal networks to arbitrary ideal clutters [11]

(the manuscript was published years later in 1979). This manuscript reached Ray Fulkerson in 1965

which reportedly influenced his work in the area, prominently on blocking theory of polyhedra [10].
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An important aspect of all ideal clutters, going all the way back to Lehman’s first manuscript on

the topic, has been the structure of such clutters. This aspect remains largely mysterious to this date, in

part due to the fact that there are several structurally different examples of ideal clutters coming from

undirected and directed graphs, binary matroids, and the unit hypercube (see [1]). Thinking about

this problem from a computational complexity perspective leads to the following: What is the time

complexity of detecting the property of idealness?

Using basic polyhedral theory, one can show easily that testing idealness belongs to co-NP. In fact,

rather surprisingly Ding, Feng and Zang [7] showed that testing idealness is co-NP-complete (even

for clutters where every element of the ground set belongs to at most two members), and so testing

idealness is NP-hard.

Many examples of clutters from Combinatorial Optimization, such as arborescences, cuts, T -joins,

and dijoins, have exponentially many members (in the size of the ground set). For this reason, for

some problems, it may be more appropriate to work in a model where C is inputted via an oracle. More

precisely, a filter oracle for a clutter C consists of V along with an oracle which, given any set X ⊆ V ,

decides in unit time whether or not X contains a member.

In the filter oracle model, it is no longer clear that testing idealness belongs to co-NP. Using a sem-

inal theorem of Lehman on minimally non-ideal clutters [12], Seymour showed that testing idealness

indeed belongs to co-NP [15]. Given Ding et al.’s co-NP-completeness result in the explicit model, one

would not expect the classification to be any different in the filter oracle. In particular, one would not

expect testing idealness in the filter oracle model to belong to NP.

In this brief note, we prove that in fact the situation in the filer oracle is determined independently

of the “P versus NP” question. We prove that in the filter oracle model, testing idealness cannot be

done in polynomial time, period. Our proof also proves that even the task of “finding a ∆3 minor”, a

first test for detecting non-idealness, cannot be done in polynomial time.

Cuboids. Our main result is proved by using the concept of cuboids, initiated in [4] and developed

in [2], which allows us to get an understanding of the “local geometry” of ideal clutters.

A cuboid is a clutter C whose ground set can be partitioned into pairs {ui, vi}, i ∈ [n] such that
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|{ui, vi}∩C| = 1 for all i ∈ [n] andC ∈ C. C can be represented as a subset of {0, 1}n. More precisely,

for each C ∈ C, let p(C) be the point in {0, 1}n such that p(C)i = 0 if and only if C∩{ui, vi} = {ui}.

Let S := {p(C) : C ∈ C}. We call C the cuboid of S, denote by cuboid(S) := C and by C(p) the

member of C corresponding to p ∈ {0, 1}n. Note that the operator cuboid(·) takes any subset of

{0, 1}n to a cuboid. S is cube-ideal if cuboid(S) is an ideal clutter. It is known that S is cube-ideal

if, and only if, the convex hull of S can be described by 0 ≤ x ≤ 1 and inequalities of the form∑
i∈I xi +

∑
j∈J(1 − xj) ≥ 1 for disjoint I, J ⊆ [n] [4, 2]. Thus, the set {0, 1}n is cube-ideal.

Moreover, if S is cube-ideal then so is every restriction of it, where a restriction is defined as any set

obtained from S after fixing some coordinates to 0 or 1 and then dropping the coordinates.

Let p ∈ {0, 1}n. The set S4p is defined as {x4p : x ∈ S}, where the second 4 denotes

coordinate-wise sum mod 2; we call S4p the twisting of S with respect to p. It can be readily seen

that twisting preserves cube-idealness. The localization of S at p, denoted by loc(S; p), is the clutter

over ground set [n] whose members are the inclusionwise minimal sets in {C ⊆ [n] : χC ∈ S4p}. In

particular, if p ∈ S then loc(S; p) = {∅}. In the original paper [2] where this notion was developped,

“the localization of S at p” was referred to instead as “the induced clutter of S with respect to p”. We

feel this new terminology is more appropriate.

The localizations of S at points outside the set are very helpful in studying cube-idealness. A

key insight for this note is that S is cube-ideal if, and only if, the localization of S at every point in

{0, 1}n − S is ideal [2]. Consequently, if for example S excludes a unique point p of {0, 1}n, then S

is cube-ideal, because loc(S; p) = {{1}, {2}, . . . , {n}} is clearly an ideal clutter.

The result We are almost ready to prove the main result of this note. Let n ≥ 1 be an integer, and

let Gn denote the skeleton graph of the unit hypercube [0, 1]n. Given S ⊆ {0, 1}n, if Gn[{0, 1}n − S]

has maximum degree at most 2, then S is cube-ideal. This result was first proved in [5], and further

studied in [3]. It can also be readily shown using the characterization of cube-idealness in terms of the

localizations. The result, however, does not extend from 2 to 3. Let S3 := {e1+e2, e2+e3, e1+e3, e1+

e2 + e3} ⊆ {0, 1}3, where ei denotes the ith standard unit vector of appropriate dimension. Then S3

is not cube-ideal because its convex hull has a facet-defining inequality of the form x1 + x2 + x3 ≥ 2.
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Moreover, in G3[{0, 1}3 − S3], the vertex 0 has 3 neighbours e1, e2, e3.

Theorem 1. Let A2n be an algorithm that, given any clutter C over 2n elements via a filter oracle,

decides whether or not C is ideal. Then in the worst case, A2n must make at least 2n−1 calls to the

filter oracle.

Proof. For all p ∈ {0, 1}n and distinct i, j, k ∈ [n], let S(p:i,j,k) := {0, 1}n−{p, p4ei, p4ej , p4ek}.

Then S(p:i,j,k) is not cube-ideal as it has an S3 restriction, while every proper superset S′ of S(p:i,j,k)

is cube-ideal as Gn[{0, 1}n − S′] has degree at most 2. In particular, cuboid
(
S(p:i,j,k)

)
is a non-

ideal clutter, while cuboid(S′) is ideal for every S′ ) S(p:i,j,k). Thus, A2n must distinguish be-

tween cuboid
(
S(p:i,j,k)

)
and cuboid(S′) for every S′ ) S(p:i,j,k). Consequently, for every point

q ∈ {p, p4ei, p4ej , p4ek}, the algorithm must query the set C(q) or a superset of it. In fact, we

can say more.

Given neighbors r, r′ of Gn, it can be readily seen that C(r), C(r′) differ in exactly one element.

This observation implies that by adding a new element toC(r) one obtained another set which contains

C(r′) for some neighbor r′ of r. Now, for each q ∈ {p, p4ei, p4ej , p4ek}−{p}, every neighbour of

q in Gn except for p belongs to both S(p:i,j,k) and S′, S′ ) S(p:i,j,k), so in order to distinguish between

the two sets the algorithm must query either C(q) or C(q) ∪ C(p).

By applying the argument above to every p ∈ {0, 1}n and distinct i, j, k ∈ [n], we conclude the

following: For every q and every neighbour of it p in Gn, A2n must query at least one of C(q), C(q)∪

C(p). Let S′ :=
{
q ∈ {0, 1}n : 1>q ≡ 0 (mod 2)

}
. Then {C(q), C(q)∪C(q4e1) : q ∈ S′} consists

of 2|S′| = 2n distinct sets, and A2n queries at least one of C(q), C(q) ∪ C(q4e1) for each q ∈ S′.

This implies that A2n queries at least 2n−1 sets, as required.

Let C be a clutter over ground set V . Let I, J be disjoint subsets of V . The minor of C obtained

after deleting I and contracting J , denoted C \ I/J , is the clutter over ground set V − (I ∪ J) whose

members are the inclusionwise minimal sets in {C − J : C ∈ C, C ∩ I = ∅}. Given a filter oracle for

C, we also have one for every minor C \ I/J [15].

Being ideal is closed under taking minor operations [14]. Two clutters are isomorphic if one can

be obtained from the other by relabeling its ground set. Denote by ∆3 any clutter isomorphic to
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{{1, 2}, {2, 3}, {3, 1}}. It can be readily checked that ∆3 is the only non-ideal clutter over a ground

set of size at most three. In particular, if a clutter has a ∆3 minor, then it is non-ideal.

Let S ⊆ {0, 1}n. It can be readily seen that every localization of S is a (contraction) minor of

cuboid(S). Thus, since loc(S3;0) = {{1, 2}, {2, 3}, {1, 3}}, cuboid(S3) has a ∆3 minor, proving

once again that S3 is not cube-ideal. It can also be readily seen that if R is a restriction of S, then

cuboid(R) is a minor of cuboid(S). Consequently, in the proof of Theorem 1, it can be readily seen

that cuboid
(
S(p:i,j,k)

)
has a ∆3 minor, while cuboid(S′) is ideal and therefore has no ∆3 minor for

every S′ ) S. Thus, the proof also implies the following.

Theorem 2. Let D2n be an algorithm that, given any clutter C over 2n elements via a filter oracle,

decides whether or not C has a ∆3 minor. Then in the worst case, D2n must make at least 2n−1 calls

to the filter oracle.
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[3] A. Abdi, G. Cornuéjols, and D. Lee. Resistant sets in the unit hypercube. Mathematics of Operations

Research, 46(1):82–114, 2020.
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