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1 Introduction

In this note, all graphs are simple (no loops or multiple edges) and finite. The vertex set of graph & is
denoted by V(&) and its edge set by E{G). A stable set is a set of vertices no two of which are adjacent,
A eligue is a set of vertices every pair of which are adjacent, The cardinality of a largest clique in graph G
is denoted by w({G). The cardinality of a largest stable set is denoted by oG). A k-coloring is a partition
of the vertices into b stable sets [these stable sets are called color classes). The chromatic number y (&) is
the smallest value of k for which there exists a f-coloring., Obviously, w{G) < (&) since the vertices of
a clique must be in distinet color classes of a k-coloring. An induced subgraph of G is a graph with vertex
set 8 C V(G and edge set comprizsing all the edges of G with both ends in 8. It is denoted by G(S5). The
graph G{V(Z) — 8} is denoted by G\ S, A graph G 15 perfect if w{H) = (M) for every indueed subgraphs
H ol &, A graph is mindmally imperfect if it is not perfect bat all its proper induced subgraphs are.

A fhole is the graph induced by a chordless cvele of length at least 4. A hole is odd if it contains an
add number of vertices. Odd holes are not perfect since their chromatic number is 3 whereas the size of
their largest cligue iz 2. It iz easy to check that odd holes are minimally imperfect. The complement of a
graph G is the graph & with the same vertex set as . and wv is an edge of G if and only if it is not an
edge of . Tt is easy to check that complements of odd holes are also minimally imperfect. In the early
sinties Berge [1] proposed the Strong Perfect Graph Conjecture: The odd holes and their complements are
the only minimally imperfect graphs. This conjecture attracted much attention over the last forty years. Tt
wis proved in May 2002 by Chudnovsky, Robertson, Sevmour and Thomas [9] in a very impressive paper,
Clande Berge passed away in June 2002 knowing that his famous conjecture is troe.

Theorem 1.1 (Strong Perfect Graph Theorem) { Chudnovsky, Robertson, Sevmour and Thomas [9])
The ondy minimally imperfect graphs are the odd holes and theiwr complements.

In this note, we survey key aspects of the proof of the Strong Perfect Graph Theorem. A Berge graph
is a graph that does not contain an odd hole or its complement as an induced subgraph, Clearly, every
perfect graph is a Berge graph. The Strong Perfect Graph Theorem states that the converse is also true:
Every Berge graph is perfect. The idea of the proof is to show that every Berge graph either falls into one
of four basic classes of perfect graphs, or that it has a kind of separation that cannot ocenr in a minimally
imperfect graph.

In [1], Berge also made a weaker conjecture, which states that a graph @ is perfect if and only if its
complement (& is perfect. This conjecture was proved by Lovisz [24] in 1972, We give a short elegant proof
due to Gasparyan [21].

Theorem 1.2 (Perfect Graph Theorem) (Lovisz [24]) Graph G is perfect if and only if graph G is
perfect.
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Proof: Lowvisz [23] proved the following stronger result.

Claim 1: A graph & iz perfect if and only if, for every induced subgraph H, the number of vertices of
H is at most of H Jw(H).

Since a(H) = w(H) and w(H) = afH), Claim 1 implies Theorem 1.2.

Proof of Claim 1; First assume that G is perfect. Then, for every induced subgraph H, w(H) = x{H).
Since the number of vertices of H is at most ol H)y(H), the inequality follows.

We give a proof of the converse due to Gasparyan [21]. Assume that ¢ is not perfect. Let H be a
minimally imperfect subgraph of ¢ and let n be the number of vertices of H. Let o = a{H) and w = w{H).
Then H satisfies

w = y(H'v) for every vertex v € V')

and w = w(H\S) for every stable set 8 C V(H).

Let Ap be an a-stable set of H. Fix an w-coloring of each of the o graphs H'\s for s € Ag, let 4y, Ao
be the stable sets oceuring as a color elass in one of these colorings and let 4= {Ap, 4y, ..., Aau ) Let A
be the corresponding stable set versus vertex incidence matrix. Define B = {5y, By, ..., B, } where [ is
an w-clique of HY4;. Let B be the corresponding clique versus vertex incidence matrix.

Claim 2: Every w-clique of H intersects all but one of the stables sets in A,

Proof of Claim 2: Let 8y, ..., 5, be any w-coloring of H Y v. Since any w-clique © of H has at most one
vertex in each S, € intersects all 5% if v @ © and all but one if v € €. Since O has at most one vertex in
Ap, Claim 2 follows.

In particular, it follows that ABT = J — I where .J is the matrix filled with ones and I the identity.
Since J — T iz nonsingular, A and B have at least as many columns as rows, that isn > aw + 1. This
completes the proof of Claim 1, O

2 Four Basic Classes of Perfect Graphs

Bipartite graphs are perfect since, for any induced subgraph ), the bipartition implies that (H) < 2 and
therefore w{H) = y(H).

A graph L is the line graph of a graph G if V(L) = E{G) and two vertices of L are adjacent if and only
if the corresponding edges of & are adjacent.

Proposition 2.1 Line graphs of bipariite graphs are perfect.

Proaf: If 7 is bipartite, (&) = A(G) by a theorem of Kinig [23], where ' denotes the edge-chromatic
mumber and A the largest vertex degree.

If L is the line graph of a bipartite graph . then y(L} = ¥'[G) and w(l) = A{G). Therefore
¥ L) = w(l). Since induced subgraphs of L are also line graphs of bipartite graphs, the result follows. O

Since bipartite graphs and line graphs of hipartite graphs are perfect, it follows from Lovisz’s perfect
graph theorem (Theorem 1.2) that the complements of bipartite graphs and of line graphs of bipartite graphs
are perfect. This can also be verified directly, without using the perfect graph theorem. To summarize, in
this section we have introduced four classes of perfect graphs:

e hipartite graphs and their complements, and
e line graphs of hipartite graphs and their complements.

These graphs are called hasic.



3 2-Join, Homogeneous Pair and Skew Partition

2-Join

A graph G has a 2-join if its vertices can be partitioned into sets 1y and Va, each of cardinality af least
three, with nonempty disjoint subsets A, By © Vi and A, By € Ve, such that all the vertices of 4, are
acdjacent o all the vertices of Ae, all the vertices of By are adjacent to all the vertices of Bz and these are
the only adjacencies between Vi oand V5. 2-joins were introduced by Cornuéjols and Cunningham [17] in
1985. They gave an O(|V(G)]*|E{G)|*) algorithm to find whether a graph G has a 2-join.

When & containg a 2-join, we can decompose & into two blocks & and Ge defined as follows.

Definition 3.1 [f As and B2 are in different connected components of G{V%), define block Gy to be G{V1 U
Tmam ), where gy € Ao and g1 € Ba. Otherwise, let Py be a shortest path from Aa to By and define block
Gy fo be GUVL UV(P)) Block G ds defined similarly,

Theorem 3.2 (2-Join Decomposition Theorem) (Cornudjols and Cunningham [17]) Graph G is per-
feet if and only if its bocks &y and o are perfect.

Corollary 3.3 If « minemally imperfect graph G has o 2-join, then & is an odd hole.

Proof: Since & is not perfect, Theorem 3.2 implies that block &) or 72 is not perfect, say &), Since 7y is
an indueed subgraph of G and G is minimally imperfect, it follows that & = &, Thus, sinee |15] = 3, 15
indueces a chordless path Py . Therefore ¢ is a minimally imperfect graph with a vertex of degree 2. It is
well known that such a graph (7 is an odd hole [27]. |

Homogeneous Pair
The notion of homogeneous pair was introduced by Chyvital and Shihi [3]. A graph & has a homogeneous
pair if V(7] can be partitioned into subsets 4y, As and B, such that;

o |4y + |Az| = 3 and |B| = 2.
o If & vertex of B is adjacent to a vertex of A, then it is adjacent to all the vertices of 4;, for ¢ € {1,2}

Theorem 3.4 (Homogeneous Pair Theorem) {Chvital and Shihi [5]) No minimally imperfect graph
has o homogeneous pair,

Skew Partition

A praph & has a skew partition if its vertices can be partitioned into four nonempty sets A, B, ', I3 such
that there are all the possible edges between A and B and no edges from © to 0. Chiital [3] introduced
skew partitions in 1985 and he conjectured that no minimally imperfect graph has a skew partition. He
ohserved that the conjecture holds for a star eutset, defined to be a skew partition where |4] = 1.

Lemma 3.5 (Star Cutset Lemma) (Chviital [3]) No mingmally imperfect graph has a star cutset.

Proof: Let G be the graph induced by AU B U and Go the graph induced by AU B U D. The graphs
(7 and G2 are perfect. Let 55 be the color class of an w(&)-coloring of ) that contains the unique node
of A, for i € {1,2}. Then §; meets all the w(G)-cligues of Gy, Le. w(G (85 US:)) < w(G). It follows that
GOy (S U Ss) ean be colored with fewer than w(7) colors, since it is perfect. Since S; U Ss is a stable set,
(7 can be colored with w((&) colors, a contradiction. o

Moteworthy contributions towards the skew partition conjecture were made by Hodng [22] and Roussel
and Rubio [28]. The conjecture was settled by Chudnovsky, Robertson, Seymour and Thomas [9]. They
obtained it as a consequence of the Strong Perfect Graph Theoremm.

Theorem 3.6 (Skew Partition Theorem) [Choadnovsky, Robertson, Seymour and Thomas [9]) No
wminemally imperfect graph has o shew partetion.



In order to prove the Strong Perfect Graph Theorem, Cludnovsky, Robertson, Seymour and Thomas
first proved the following weaker result.

A skew partition is balaneed if
(i} every induced path of length at least 2 in G with ends in AU B and interior in C'U D is even, and
(ii) every induced path of length at least 2 in & with ends in O U D and interior in A U B is even,

Theorem 3.7 [Chudnovsky, Robertson, Sevmour and Thomas [8]) A minimally imperfect Berge graph
with smallest number of vertices cannot have o balanced skew partition.

We give the proof of Theorem 3.7, It uses Lovdsz’s Replication Lemma [24] which we discuss next,
Incidentally, the Replication Lemma was the step that Fulkerson missed in his attempt to prove the Perfect
Graph Theorem. Because Fulkerson had convinced himself that it was likely to be false, he had not tried
very hard to prove it. Fulkerson [20] says: “In the Spring of 1971, I received a posteard from Berge saying
that he had just heard that Lovdsz had a proof of the perfect graph conjecture. This immediately rekindled
my interest, naturally, and so I sat down at my desk and thought again about the replication lemma. Some
four or five hours later, I saw a simple proof of it.”

Lemma 3.8 (Replication Lemma) (Lovisz [24]) Lef G be a perfect graph and v € 1(G). Create a new
vertex v and join i@ to v end to all the neighbors of v. Then the resulting graph ' is perfect.

Proof: It suffices to show y (') = w(G"} since, for induced subgraphs, the proof follows similarly. We
distinguish two cases.

Case 1: Vertex v is contained in some maximum clique of G. Then w{G") = w{F) + 1. This implies
G < w(G"), since at most one new color is needed in &', Clearly x(G") = w(G") follows.

Case 2: Vertex v is not contained in any maximum clique of ¢, Consider any coloring of G with w(&)
colors and let S be the color class containing v. Then w(G 4 (8 — {v}]) = w(G) — 1, since every
maximum clique in 7 meets 5§ — {v}. By the perfection of &, the graph G (5 — {v}) can be colored
with w{{7) — 1 colors, Using one additional color for the vertices (S — {v}}U{e'}, we obtain a coloring
of G" with w{(Z} colors, o

Proof of Theorem 3.7 Let & be a minimally imperfect Berge graph with smallest number of vertices.
Suppose that Chas a balanced skew partition A, B, O D). By the Star Cutset Lemma 3.5, each of A, B, O, D
has cardinality at least two. Let &' be the graph obtained from 7 by adding a vertex v adjacent to all the
vertices of 4 and to no other vertex of 7. If G' contains an odd hole, then (7 has an odd path contradicting
(i) in the definition of a balanced skew partition. Similarly, if G' contains an odd hole, (i) is contradicted.
Therefore (7' 15 a Berge graph. Now consider & = &'\ D and Gs = G'"\ C. For i € {1, 2}, the graph (; is
perfect sinee it is Berge and has fewer vertices than &. Replicate vertex # in & so that ¢ belongs to a cligue
of size w(G). By the Replication Lemma 3.8, the resulting graph H; is perfect. Consider w({G)-colorings of
Ry and Rz vespectively. Both colorings have the same number of colors in A and assume w.log. that these
colors are 1.2, ... k. Let K be the subgraph of 7 indoeced by the vertices with colors 1,2, ... & and let H
be the subgraph of & induced by the vertices with other colors. Since every w(G)-clique of 7 15 in G I or
GO the largest elique in K has size k and the largest clique in 8 has size w(G) — k. The graphs H and
K are perfect since they are proper subgraphs of . Color K with & colors and H with w(G) — k colors,
Now 7 is colored with w((7F) colors, a contradiction to the assumption that G is minimally imperfect. 0O

Theorem 3.7 was presented in September 2001 at a workshop in Princeton. As the next step towards
Theorem 3.6, Chudnovsky and Seymour obtained the following theorem in January 2002.

Theorem 3.9 [(Chudnovsky and Seymour [10]) A minimally imperfect Berge graph with smallest number
af vertices cannol hove o shew parlition.



4 Decomposition of Berge Graphs

Conforti, Cornnéjols and Vuskovié proposed the following approach to solving the Strong Perfect Graph
Conjecture.

Conjecture 4.1 (Conforti, Cornuéjols and Vuskovic (2001)) (Decomposition Conjecture) Every Berge
graph & is basic or has o skew partition, or G or G has o 2-join.

Chudnovsky, Roberison, Seymour and Thomas proved the following variation of this conjecture.

Theorem 4.2 (Chudnovsky, Robertson, Seymour and Thomas [9]) (Decomposition Theorem) Every
Berge graph G is basic or has o shew porittion or o homogeneous pair, or G or G has a 2-join.

This theorem implies the Strong Perfect Graph Theorem. Indeed, suppose that the Decomposition
Theorem holds and that there exists a minimally imperfect graph & distinct from an odd hole or its com-
PHement. Choose G with the smallest number of vertices. & cannot have a skew partition by Theorem 3.9,
& cannot have a homogeneous pair by Theorem 3.4, Neither G nor & can have a 2-join by Corollary 3.3
Since ¢ is a Berge graph, G must be basic by the Decomposition Theorem. Therefore G is perfect, a
contradiction.

Theorem 4.2 was already known to hold in several special cases. For example, it was known when 7
is a Meyniel graph {(Burlet and Fonlupt [2] in 1984), when & is claw-free {Chvatal and Sbhihi [6] in 1988
and Maffray and Reed [26] in 1999), diamond-free (Fonlupt and Zemirline [19] in 1987}, bull-free (Chvital
and Sbihi [5] in 1987}, or dart-free (Chvital, Fonlupt, Sun and Zemirline [4] in 20003, All these results
involve special types of skew partitions {such as star cutsets) and, in some cases, homogeneous pairs [5]. A
special case of 2-join called augmentation of a flat edge appears in [26]. In 1999, Conforti and Cornnéjols
[13] used more general 2-joins to prove Conjecture 4.1 for WP-free Berge graphs, a class of praphs that
contains all bipartite graphs and all line graphs of bipartite graphs. [13] was the precursor of a sequence of
decompaosition results involving 2-joins. The following result was obtained in February 2001.

Theorem 4.3 [Conforti, Cornuéjols and Vuskoviée [14]) A sguare-free Berge graph is bipartite, the line
araph of o bipartite graph, or has o 2-join or a star culsel.

A breakthrough oceured in September 2001 when Chudnovsky, Robertson, Sevmour and Thomas an-
nonneed that they could prove the Decomposition Conjecture in the following important special case.

Theorem 4.4 (Chudnovsky, Robertson, Seymour and Thomas [8]) If & is 0 Berge graph that contains the
line graph of a bipartite subdivision of a 3-connected graph, then G has a balanced skew partition, or G or
G ohas a 2-join o ds the line graph of a bipartite graph.

Given two vertex disjoint triangles ap, az, ag and by b, by, a subdivided prism is a graph induced by
three chordless paths, P*' = ay,....0y, P? = aa,..., b and P¥ = qga,...,l4, at least one of which has
length greater than one, such that P!, P2 P? have no common vertices and the only adjacencies between
the vertices of distinct paths are the edges of the two triangles. The next result, obtained in Jamuary 2002,
is a real tour-de-force and a key step in the proof of the Strong Perfect Graph Theorem. In particular, it
was needed to prove Theorem 3.9.

Theorem 4.5 (Chudnovsky and Seymour [10]) If & is @ Berge graph that contains a subdivided prism,
then G is the line graph of a bipartite graph or G hos o balanced skew partition or o homogeneous pair, or
G oor G has a 2-join.

A wheel (H,v) consists of a hole H together with a vertex v, called the center, with at least three
neighbors in H. If v has & neighbors in H, the wheel is called a k-wheel. A line wheel 15 a d-wheel (1, v)
that containg exactly two triangles and these two triangles have only the center v in commaon. A fwdn wheel



is # J-wheel containing exactly two triangles. A wniversal wheel is a wheel (H,v) where the center v is
adjacent to all the vertices of H. A triongle-free wheel is a wheel containing no triangle. A proper wheel is
a wheel that is not any of the above four types. These concepts were first introduced in [13]. The following
theorem, obtained in May 2002, generalizes an earlier result of Zambelli presented in September 2000 and
of Thomas [29].

Theorem 4.6 [Conforti, Cornuéjols and Zambelli [16]) If G s a Berge graph that containg no proper
wheel, subdivided prism or their complemendts, then G is basic or has o shew pardition.

The last step in proving the Strong Perfect Graph Theorem is the following difficult theorem, also
obtained in May 2002,

Theorem 4.7 (Chudnovsky and Seymour [11]) If G is a Berge graph that contains a proper wheel, but no
subdivided prism or s complement, then G has o shew partition, or G or G has o 2-join.

Theorems 4.5, 4.6 and 4.7 imply the Decomposition Theorem 4.2, and therefore the Strong Perfect
Graph Theorem. A monumental paper containing these results is now available [9].

Conforti, Cornudjols and Vuskovié [15] proved a weaker version of the Decomposition Conjecture where
“shew partition™ is replaced by “double star cutset”. A double star is a vertex sei S that contains two
adjacent vertices u, v and a subset of the vertices adjacent to w or v. Clearly, if & has a skew partition,
then ¢ has a double star cutset: Take § = AUE, uw € A and v € B. Although the decompaosition result in
[15] is weaker than Conjecture 4.1 for Berge graphs, it holds for a larger class of graphs than Berge graphs:
By changing the decomposition from “skew partition” to “double star cutset”, the result can be obtained
for all odd-hole-free graphs instead of just Berge graphs.

Theorem 4.8 [Conforti, Cornnéjols and Vuskovic [13]) If G is an odd-hole-free graph, then G is a bipartite
graph or the line graph of o bipartite graph or the complement of the line graph of a bipartite graph, or G
has a double star cufsef or o 2-join.

Theorem 4.8 was used by Cornuéjols, Lin and Vuskovié [18] to construct a polynomial time recognition
algorithm for perfect graphs. Independently, Chudnovsky and Sevmour [12] found a different algorithm for
perfect graph recognition which does not use decomposition, Both algorithms [12], [18] build on the same
companion paper [7] which performs a certain “cleaning” step in polynomial time.

A useful tool for studving Berge praphs is due to Roussel and Rubio [28]. This lemma was proved
independently by Chudnovsky, Robertson, Seyvmour and Thomas [8], who popularized it and named it The
Wonderful Lemma. Tt is used repeatedly in the proofs of Theorems 4.4-4.7.

Lemma 4.9 (The Wonderful Lemma) [Roussel and Rubio [28]) Let G be a Berge graph and assume
that V() can be partitioned into a set § and an odd chordless path P = w.o', ... v' v of length at least 3

such that u, v are both adjacent to all the vertices in 8 and G(S) is connected, Then one of the following
holds:

(1) An odd number of edges of P have both ends adjacent to all the vertices in 5,
{ii} P has length 3 and G(S U {u',v'}) conteins an odd chordless path between u' and v'.

(it} P has length at least 5 and there exist fwo nonadjocent vertices @, x' in S such that (V{P)\ {u.0}iU
{o, o'} induces a path,
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