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Abstract

A clutter is clean if it has no delta or the blocker of an extended odd hole minor. There are combinatorial

and geometric classes of clean clutters, namely ideal clutters, clutters without an intersecting minor, and binary

clutters. A clutter is tangled if it has covering number two and every element is in a minimum cover. Clean

tangled clutters arise, for example, when studying the packing property in Clutter Theory. We define two

parameters on clean tangled clutters, one is the optimum of a combinatorial minimization problem called the

monochromatic covering number, extending notions such as matroid girth and clutter covering number, while

the other is the optimum of a geometric maximization problem called the depth, intimately linked to another

parameter defined recently called the notch of a set system. We prove a min-max relation between the two

parameters, exposing an intriguing interplay between the combinatorics and the geometry of such clutters. As

a consequence of our results, we also prove that the core of an ideal tangled clutter is an ideal clutter.

Keywords. Clutters, clean tangled clutters, min-max relation, notch, covering number, girth.

1 Introduction

Take an integer n ≥ 3. Denote by ∆n the clutter over ground set [n] := {1, . . . , n} whose members are

{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}. Any clutter isomorphic to ∆n is called a delta of dimension n. A delta

is equal to its blocker. Given an odd integer n ≥ 5, an extended odd hole of dimension n is any clutter whose

ground set can be relabeled as [n] so that its minimum cardinality members are precisely {1, 2}, {2, 3}, . . . , {n−
1, n}, {n, 1}. The deltas, extended odd holes, and their blockers form a basic class of non-ideal clutters.

It was proved in [13] that testing idealness of a clutter is co-NP-complete, a result that is surprising given

that testing perfection of a clutter belongs to P [10]. The bottleneck is that given a clutter, finding a minor that is

a delta or an extended odd hole, is an NP-hard task. In another surprising turn of events, it was recently shown

that the same problem would belong to P if the input were the blocking clutter rather than the clutter itself. More

precisely,

Definition 1.1. A clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole.

Unlike idealness, testing cleanness of a clutter belongs to P [5]. The class of clean clutters contains ideal

clutters, binary clutters, as well as clutters without an intersecting minor. There are several conjectures in Com-
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binatorial Optimization, Graph Theory, and Matroid Theory that relate to these classes of clutters. The Flowing

Conjecture relating to ideal binary clutters [21], and the τ = 2 Conjecture relating to ideal clutters without an

intersecting minor [11] are two highlights. In fact, it suffices to prove these two conjectures, as well as a few

others, for clean tangled clutters.

Definition 1.2. A clutter C is tangled if it has covering number two, and every element appears in a minimum

cover. Given a tangled clutter C over ground set V , denote by G(C) the graph over vertex set V whose edges

correspond to the minimum covers of C.

Clean tangled clutters have been a recent subject of study by the authors. In [1], we proved the Dyadic

Conjecture for clean tangled clutters. In [6], the structure of these clutters was used to obtain a new infinite

class of ideal minimally non-packing clutters. In [7], an interplay between the geometry and the combinatorics

of these clutters were exposed, where a connection between simplices and projective geometries was shown.

We continue the study of clean tangled clutters, further cementing the interplay between the geometry and the

combinatorics of such clutters. To this end, let C be a clean tangled clutter.

Rank It can be readily seen that G(C) is a bipartite graph. The rank of C, denoted rank(C), is the number of

connected components of G(C).

Monochromatic covering number A cover of C is monochromatic if it is monochromatic in some proper

2-vertex-coloring of G(C). The monochromatic covering number of C is defined as

µ(C) := min{|B| : B is a monochromatic cover of C};

if there is no monochromatic cover, then µ(C) :=∞. Observe that µ(C) ≥ 3.

Depth The core of C, denoted core(C), is the set of all members C ∈ C that intersect every minimum cover

of C exactly once. Alternatively, the core collects the members that can be used with a nonzero coefficient in a

fractional packing of value two. It is known that core(C) is a duplication of the cuboid of a set S ⊆ {0, 1}rank(C).
Moreover, it is known that S is unique up to relabeling and twisting the coordinates, and its convex hull is a

full-dimensional polytope containing 1
2 · 1 in its interior. The set S is called the setcore of C [7]. Let us call the

points in S feasible, and the points in {0, 1}rank(C) − S infeasible. The depth of C is defined as

depth(C) := max{d : setcore(C) has a d-dimensional infeasible hypercube};

if setcore(C) has no infeasible hypercube, then depth(C) := −∞.

The min-max relation In §3 we prove that for every clean tangled clutter C, we have

rank(C)− µ(C) = depth(C) .
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Observe that µ(C) is a parameter defined on all of C, while depth(C) is a parameter defined only on the

core of C, so the min-max relation above is non-trivial. Observe that the monochromatic covering number is the

optimum of a combinatorial minimization problem, while the depth is the optimum of a geometric maximization

problem. Thus, the min-max relation manifest an intriguing interplay between the combinatorics and the geome-

try of clean tangled clutters. On the combinatorial side, we see in §4 that our notion of monochromatic covering

number extends the conventional notion of girth for simple graphs and more generally simple binary matroids,

as well as the notion of covering number for clean clutters with covering number at least three. On the geometric

side, our notion of depth is intimately linked to the notion of notch defined recently in [9]. More precisely, when

the depth of C is finite, then it is equal to the notch of setcore(C) minus 1. In §4, we also introduce irreducible

monochromatic covers, and prove as a consequence that the core of an ideal tangled clutter is also ideal.

2 Definitions and preliminaries

Clutters Let V be a finite set of elements, and let C be a family of subsets of V called members. C is a clutter

over ground set V if no member contains another [14]. Two clutters are isomorphic if one is obtained from the

other by relabeling the ground set. Two distinct elements u, v are duplicates in C if for each C ∈ C, u ∈ C if

and only if v ∈ C. To duplicate an element u of C is to introduce a new element v and replace C by the clutter

over ground set V ∪ {v} whose members are {C : u /∈ C ∈ C} ∪ {C ∪ {v} : u ∈ C ∈ C}. A duplication of C is

any clutter obtained from C after repeatedly duplicating some elements. A transversal is a subset B ⊆ V such

that |B ∩ C| = 1 for all C ∈ C. A cover is a subset B ⊆ V such that B ∩ C 6= ∅ for all C ∈ C. The covering

number of C, denoted τ(C), is the minimum cardinality of a cover. A cover is minimal if it does not contain

another cover. The blocker of C, denoted b(C), is the clutter over ground set V whose members are the minimal

covers of C [14]. It is well-known that b(b(C)) = C [16, 14]. Take disjoint I, J ⊆ V . The minor of C obtained

after deleting I and contracting J , denoted C \ I/J , is the clutter over ground set V − (I ∪ J) whose members

consist of the inclusion-wise minimal sets of {C − J : C ∈ C, C ∩ I = ∅}. The minor is proper if I ∪ J 6= ∅. It

is well-known that b(C \ I/J) = b(C)/I \ J [20].

Cuboids Take an integer r ≥ 1 and a set S ⊆ {0, 1}r. We refer to the points in S as feasible and the points

in {0, 1}r − S as infeasible. The cuboid of S, denoted cuboid(S), is the clutter over ground set [2r] whose

members have incidence vectors {(p1, 1 − p1, . . . , pr, 1 − pr) : p ∈ S} [8, 2]. Observe that for each i ∈ [r],

|C ∩ {2i − 1, 2i}| = 1 for all C ∈ cuboid(S), so {2i − 1, 2i} is a cover of the cuboid. Observe that if the

points in S do not agree on a coordinate, then cuboid(S) is a tangled clutter; that is, any cuboid without a cover

of size one is tangled. Take a point q ∈ {0, 1}r. To twist S by q is to replace S by S4q := {p4q : p ∈ S},
where the second4 denotes coordinate-wise addition modulo 2. Take a coordinate i ∈ [r]. Denote by ei the ith

unit vector of appropriate dimension. To twist coordinate i of S is to replace S by S4ei. Two sets S1, S2 are

isomorphic, written as S1
∼= S2, if one is obtained from the other after relabeling and twisting some coordinates.

Two distinct coordinates i, j ∈ [r] are duplicates in S if S ⊆ {x : xi = xj} or S ⊆ {x : xi + xj = 1}. Observe
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that if two coordinates are duplicates in a set, then they are duplicates in any isomorphic set. Observe further

that S has duplicated coordinates if, and only if, cuboid(S) has duplicated elements.

2.1 Core and setcore

Let C be a clean tangled clutter over ground set V . Recall that G(C) is the graph over vertex set V whose

edges correspond to the minimum covers of C. Recall that if C is a clean tangled clutter, then the rank of C,

denoted rank(C), is the number of connected components of G(C). It can be readily checked that G(C) is a

bipartite graph. Let G := G(C) and r := rank(C). For each i ∈ [r], denote by {Ui, Vi} the bipartition of the ith

connected component of G. Recall that the core of C is defined as

core(C) := {C ∈ C : |C ∩B| = 1 for every minimum cover B of C}.

Theorem 2.2 below shows that the core is nonempty, and has covering number two.

Theorem 2.1 ([7], Theorem 2.9). core(C) = {C ∈ C : C ∩ (Ui ∪ Vi) ∈ {Ui, Vi} for each i ∈ [r]}.

In particular, core(C) is a duplication of a cuboid – let us elaborate. The setcore of C with respect to

(U1, V1;U2, V2; . . . ;Ur, Vr) is the set S ⊆ {0, 1}r defined as follows: start with S = ∅, and for each C ∈
core(C), add a point p to S such that

pi = 0 ⇔ C ∩ (Ui ∪ Vi) = Ui ∀i ∈ [r].

By Theorem 2.1, the set S is well-defined and core(C) is a duplication of cuboid(S). We denote S by the

notation setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). As the reader can imagine, we will not use this notation often,

and use setcore(C) as short-hand notation. Note however that setcore(C) is defined only up to isomorphism.

Theorem 2.2 ([7], Theorem 1.5). conv(setcore(C)) is a full-dimensional polytope contained in [0, 1]r and

containing 1
2 · 1 in its interior. In particular, setcore(C) does not have duplicated coordinates, core(C) is

nonempty, and has covering number two.

We also need the following earlier results.

Theorem 2.3 ([7], Theorem 2.10). The following statements hold:

(i) If r = 1, then core(C) = {U1, V1}.

(ii) If r = 2, then core(C) = {U1 ∪ U2, U1 ∪ V2, V1 ∪ U2, V1 ∪ V2}.

Theorem 2.4 ([1], Theorem 2.5, and [7], Lemma 2.6). Suppose G is not connected. Let {U,U ′} be the bipar-

tition of a connected component of G. Then C \ U/U ′ is a clean tangled clutter such that core(C \ U/U ′) ⊆
core(C) \ U/U ′.

Finally, we will need the following lemma.
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Lemma 2.5. Suppose for some u, v ∈ V , every member of core(C) containing u also contains v. Then u, v

belong to the same part of the bipartition of a connected component of G.

Proof. By Theorem 2.1, it suffices to show that u, v belong to the same connected component of G. Suppose

otherwise. In particular, G is not connected. Let {U,U ′} be the bipartition of the connected component con-

taining u where u ∈ U ′. Then C \ U/U ′ is a clean tangled clutter such that core(C \ U/U ′) ⊆ core(C) \ U/U ′

by Theorem 2.4. Let w be a neighbor of u in G; so w ∈ U . Then {w, u} is a cover of C. As every mem-

ber of core(C) containing u also contains v, it follows that {w, v} is a cover of core(C), implying in turn that

core(C)\U/U ′ has {v} as a cover. However, core(C \ U/U ′) ⊆ core(C)\U/U ′, so core(C \ U/U ′) has a cover

of cardinality 1, a contradiction to Theorem 2.2.

3 Proof of the min-max relation

Let C be a clean tangled clutter, G := G(C), and r := rank(C). For each i ∈ [r], let {Ui, Vi} be the bipartition

of the ith connected component of G. Let B be a cover of C. Recall that B is a monochromatic cover if it is

monochromatic in some proper 2-vertex-coloring ofG. Equivalently, B is a monochromatic cover ifB∩Ui = ∅
or B ∩ Vi = ∅ for each i ∈ [r]. Let µ := µ(C) and δ := depth(C).

Proposition 3.1. r − µ ≤ δ.

Proof. If µ =∞, then we are done. Otherwise, let B be a monochromatic minimal cover of cardinality µ. After

relabeling and swapping Ui, Vi, i ∈ [r], if necessary, we may assume that B ⊆ U1 ∪U2 ∪ · · · ∪Uµ. In particular,

U1 ∪ · · · ∪ Uµ is a cover of C. Thus for each C ∈ core(C),

C ∩ (Ui ∪ Vi) = Ui for some i ∈ [µ].

That is, if S ⊆ {0, 1}r is the setcore of C with respect to (U1, V1; . . . ;Ur, Vr), then

S ∩ {x : x1 = · · · = xµ = 1} = ∅.

Thus {x : x1 = · · · = xµ = 1} is an infeasible hypercube of S of dimension r − µ, implying in turn that

δ ≥ r − µ, as required.

In §3.1, we introduce irreducible monochromatic covers, and also prove that every monochromatic cover

intersects at least µ(C) many connected components of G. In §3.2, we prove that in fact every monochromatic

cover of core(C) intersects µ(C) many connected components of G. Finally, in §3.3, we prove the min-max

relation r − µ = δ.

3.1 Monochromatic covers

Lemma 3.2. If V1∪· · ·∪Vk is a monochromatic cover for some integer k ∈ [r], then there exists a monochromatic

minimal cover B such that B ⊆
⋃k
i=1(Ui ∪ Vi) and |B ∩ (Ui ∪ Vi)| ≤ 1 for each i ∈ [k].
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Proof. Denote by V the ground set of C. Out of all the monochromatic minimal covers of C contained in⋃k
i=1(Ui ∪ Vi), pick one of minimum cardinality, call it B. Pick U,U ′ such that {U,U ′} = {Ui, Vi} for some

i ∈ [k] and ∅ 6= B ∩ (U ∪ U ′) ⊆ U ′. We claim that |B ∩ (U ∪ U ′)| = 1, thereby proving the lemma. Suppose

for a contradiction that |B ∩ (U ∪U ′)| ≥ 2. Let I := B− (U ∪U ′), J := V − (U ∪U ′ ∪ I), and C′ := C \ I/J ,

a minor over ground set U ∪ U ′. Assume in the first case that τ(C′) ≥ 2. Then C′ is clean and tangled, and

G[U ∪ U ′] ⊆ G(C′). Thus G(C′) is a connected, bipartite graph whose bipartition is inevitably {U,U ′}. It

therefore follows from Theorem 2.3 (i) that U,U ′ ∈ C′. However, B∩U ′ = B∩ (U ∪U ′) = B− I is a minimal

cover of C′ disjoint from U , a contradiction. Assume in the remaining case that τ(C′) ≤ 1. That is, there is a

D ∈ b(C) such that D ⊆ U ∪ U ′ ∪ I and |D − I| ≤ 1. But then D is a monochromatic minimal cover of C
contained in

⋃k
i=1(Ui ∪ Vi) and

|D| = |D − I|+ |D ∩ I| ≤ 1 + |B − (U ∪ U ′)| < |B ∩ (U ∪ U ′)|+ |B − (U ∪ U ′)| = |B|,

a contradiction to our minimal choice of B. As a result, |B ∩ (U ∪ U ′)| = 1, as desired.

As a consequence, we get the following:

Theorem 3.3. Suppose a monochromatic cover exists. Then every monochromatic cover of C intersects at least

µ connected components of G. In particular,

• every monochromatic cover intersects at least 3 connected components of G, and

• µ ≤ r.

Proof. Let B be a monochromatic cover, and K the set of the connected components intersected by B. Then by

Lemma 3.2 there is a monochromatic minimal cover B′ that intersects only a subset of K and intersects every

connected component at most once. As a result, |K| ≥ |B′| ≥ µ, thereby finishing the proof.

3.2 The effect of deletion-contraction on r and µ

We saw in Theorem 3.3 that every monochromatic cover of C intersects at least µ connected components of

G. Here we strengthen this result by proving that every monochromatic cover of core(C) intersects at least µ

connected components of G. We need two lemmas about how the rank and the monochromatic covering number

change when the two parts of a connected component of G are deleted and contracted.

Lemma 3.4. Suppose G is not connected, and let {U,U ′} be the bipartition of a connected component of G.

Then the following statements hold:

(i) rank(C \ U/U ′) ≤ r − 1, and if equality holds, then the vertex sets of the connected components of

G(C \ U/U ′) are precisely the vertex sets of the connected components of G different from G[U ∪ U ′],

(ii) equality does not hold in (i) if and only if there is a monochromatic cover B of C such that B ∩ U 6= ∅ and

B intersects exactly 3 connected components of G, and
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(iii) if µ > 3, then rank(C \ U/U ′) = r − 1.

Proof. We may assume that U ∪U ′ = Ur ∪Vr. Let C′ := C \U/U ′, which is clean and tangled by Theorem 2.4,

and let G′ := G(C′). As G[Ui ∪ Vi] ⊆ G′ for all i ∈ [r − 1], G′ has at most r − 1 connected components, so

rank(C′) ≤ r−1, and if equality holds, then the connected components ofG′ are preciselyG′[Ui∪Vi], i ∈ [r−1].

Thus (i) holds.

Claim 1. Assume that B is a monochromatic cover of C such that B ∩ U 6= ∅ and B intersects exactly 3

connected components of G. Then rank(C′) < r − 1.

Proof of Claim. We may assume that B ⊆ Ur−2 ∪ Ur−1 ∪ U . As B − U is a cover of C′, it follows that

Ur−2 ∪ Ur−1 is a cover of C′. Let us now prove that rank(C′) < r − 1. Suppose otherwise. Then the connected

components of G′ are precisely G′[Ui ∪ Vi], i ∈ [r− 1] by (i). But then Ur−2 ∪Ur−1 is a monochromatic cover

of C′, one that intersects only 2 connected components of G′, a contradiction to Theorem 3.3 applied to C′. ♦

Claim 2. Assume that rank(C′) < r− 1. Then there is a monochromatic cover B of C such that B ∩U 6= ∅ and

B intersects exactly 3 connected components of G.

Proof of Claim. Observe that r ≥ 3. As G′ has fewer than r−1 connected components, and as G[Ui∪Vi] ⊆ G′

for i ∈ [r − 1], we may assume that G′ has an edge between Ur−2 and Ur−1. In particular, Ur−2 ∪ Ur−1 is a

cover of C′, implying in turn that B := Ur−2 ∪ Ur−1 ∪ U is the desired cover of C. ♦

Claims 1 and 2 prove (ii).

Claim 3. (iii) holds.

Proof of Claim. We prove the contrapositive. Assume that rank(C′) < r − 1. Then by (ii) there is a monochro-

matic cover B of C such that B ∩ U 6= ∅ and B intersects exactly 3 connected components of G. Theorem 3.3

now applies to C and tells us that 3 ≤ µ ≤ 3, so µ = 3, as required. ♦

This finishes the proof of Lemma 3.4.

Lemma 3.5. Suppose G is not connected, and let {U,U ′} be the bipartition of a connected component of G.

Then

µ− 1 ≤ µ(C \ U/U ′).

Moreover, assuming µ is finite and greater than 3, equality holds above if and only if there is a monochromatic

cover B of C such that B ∩ U 6= ∅ and B intersects exactly µ connected components of G.

Proof. Let C′ := C \ U/U ′, a clean tangled clutter by Theorem 2.4, and let G′ := G(C′). Let µ′ := µ(C′). Note

that µ′ ≥ 3 because C′ is a clean tangled clutter. If µ = 3, then µ − 1 = 2 < µ′, so we are done. We may

therefore assume that µ > 3. We may assume that U ∪ U ′ = Ur ∪ Vr. It follows from Lemma 3.4 (iii) that

rank(C′) = r − 1, so by Lemma 3.4 (i), the connected components of G′ are precisely G′[Ui ∪ Vi], i ∈ [r − 1].

This immediately implies Claim 1 below:
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Claim 1. The bipartitions of the connected components of G′ are {Ui, Vi}, i ∈ [r − 1].

Claim 2. µ− 1 ≤ µ′, and if µ is finite and equality holds, then there is a monochromatic cover B of C such that

B ∩ U 6= ∅ and B intersects exactly µ connected components of G.

Proof of Claim. If µ′ = ∞, we are done. Otherwise, let B′ be a monochromatic cover of C′ of cardinality µ′.

LetB := B′∪U , a monochromatic cover of C. In particular, µ is finite. On one hand, B intersects at most µ′+1

connected components of G, as |B′| = µ′. On the other hand, B intersects at least µ connected components of

G by Theorem 3.3 applied to C. Thus µ ≤ µ′ + 1, and if equality holds, then B is the desired set. ♦

Claim 3. Suppose B is a monochromatic cover of C such that B ∩ U 6= ∅ and B intersects exactly µ connected

components of G. Then µ′ = µ− 1.

Proof of Claim. As B is monochromatic, B ∩U ′ = ∅, so B −U is a cover of C′. In fact, B −U is a monochro-

matic cover of C′ by Claim 1. As B − U intersects only µ − 1 connected components of G′, µ′ ≤ µ − 1 by

Theorem 3.3 applied to C′, so µ′ = µ− 1 by Claim 2, as claimed. ♦

Claims 2 and 3 finish the proof.

3.3 The min-max relation r − µ = δ

Lemma 3.6. The following statements are equivalent:

• µ =∞, i.e. C does not have a monochromatic cover,

• δ = −∞, i.e. setcore(C) = {0, 1}r, i.e.
⋃r
i=1Wi ∈ core(C) whenever Wi ∈ {Ui, Vi}, i ∈ [r].

Proof. (⇒) Let us first prove that
⋃r
i=1 Ui ∈ C. For if not, then

⋃r
i=1 Vi is a monochromatic cover, which is

not the case. Thus
⋃r
i=1 Ui ∈ C and so

⋃r
i=1 Ui ∈ core(C) by Theorem 2.1. Similarly,

⋃r
i=1Wi ∈ core(C)

whenever Wi ∈ {Ui, Vi}, i ∈ [r]. (⇐) is immediate.

Theorem 3.7. Assume that U1 ∪ · · · ∪ Uk is a cover of core(C) for some k ∈ [r]. Then k ≥ 3. In fact, k ≥ µ.

Proof. It follows from Theorem 2.3 (i)-(ii) that r ≥ 3, and from Lemma 3.6 that µ is finite.

Let us first prove that k ≥ 3. Suppose otherwise. Then U1∪U2 is a cover of core(C). Pick u1 ∈ U1, u2 ∈ U2

and v2 ∈ V2. It follows from Theorem 2.1 that {u1, u2} is a cover of core(C), and that every member of core(C)
containing v2 also contains u1. But then Lemma 2.5 implies that u1, v2 belong to the same connected component

of G, a contradiction.

Let us next prove that k ≥ µ. We proceed by induction on r ≥ 3. For the base case r = 3, as the

monochromatic covering number is finite, we may apply Theorem 3.3 and conclude that k ≥ 3 = r ≥ µ. For

the induction step, assume that r ≥ 4. If µ = 3, then we are done. Otherwise, µ > 3. Let C′ := C \ Uk/Vk,

which is a clean tangled clutter such that core(C′) ⊆ core(C) \ Uk/Vk by Theorem 2.4. Let G′ := G(C′). Then

U1 ∪ · · · ∪ Uk−1 is a cover of core(C′). As µ > 3, it follows from Lemma 3.4 (iii) that rank(C′) = r − 1, so
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by Lemma 3.4 (i), the connected components of G′ are precisely G′[Ui ∪ Vi], i ∈ [r] − {k}. We may therefore

apply the induction hypothesis to conclude that k − 1 ≥ µ(C′). By Lemma 3.5, µ(C′) ≥ µ− 1. Putting the last

two inequalities together gives us that k ≥ µ, thereby completing the induction step.

Notice that Theorem 3.7 non-trivially relates a core dependent parameter to a parameter defined on the whole

clutter.

Theorem 3.8. r − µ = δ.

Proof. If δ = −∞, then µ =∞ by Lemma 3.6, so we are done. Otherwise, pick a subset I ⊆ [r] of cardinality

r − δ and decisions a1, . . . , ar−d ∈ {0, 1} such that setcore(C) ∩ {x : xi = ai, i ∈ I} = ∅. That is, for some

Wi ∈ {Ui, Vi}, i ∈ I , the union
⋃
i∈IWi is a cover of core(C). It therefore follows from Theorem 3.7 that

r − δ ≥ µ. By Proposition 3.1, r − δ ≤ µ, so r − δ = µ, thereby finishing the proof.

4 Applications

In this section we discuss four applications of our results. In §4.1, we discuss irreducible monochromatic covers.

In §4.2, we discuss ideal tangled clutters, and prove that the core of such clutters is also ideal. In §4.3, we show

how the monochromatic covering number extends the notion of girth for simple binary matroids and simple

graphs. In §4.4, we show how the monochromatic covering number extends the notion of covering number for

clean clutters with covering number at least three.

Moving forward we need the following remark.

Remark 4.1. Take an integer r ≥ 1, a set S ⊆ {0, 1}r without an infeasible hypercube of dimension at least

r − 2, and let C := cuboid(S). Suppose C is a clean tangled clutter. Then rank(C) = r and setcore(C) ∼= S.

4.1 Irreducible monochromatic covers

Let C be a clean tangled clutter, where G := G(C), r := rank(C), and denote by {Ui, Vi} the bipartition of

the ith connected component of G for i ∈ [r]. Take a subset I ⊆ [r]. We say that
⋃
i∈I Vi is an irreducible

monochromatic cover of C if
⋃
i∈I Vi is a cover of C, and for each j ∈ I ,

(⋃
i∈I,i6=j Vi

)
∪ Uj is not a cover. In

particular, if
⋃
i∈I Vi an irreducible monochromatic cover, then

⋃
i∈I,i6=j Vi is not a cover for any j ∈ I . Let

µ := µ(C).

Theorem 4.2. Suppose µ is finite and U1 ∪ · · · ∪ Uµ is a cover of C. Then U1 ∪ · · · ∪ Uµ is an irreducible

monochromatic cover of C.

Proof. By symmetry, it suffices to show that U1 ∪ · · · ∪ Uµ−1 ∪ Vµ is not a cover. Suppose otherwise. Let

S ⊆ {0, 1}r be the setcore of C with respect to (U1, V1; . . . ;Ur, Vr). Then the two covers U1 ∪ · · · ∪ Uµ−1 ∪
Uµ, U1 ∪ · · · ∪ Uµ−1 ∪ Vµ yield the following infeasible hypercubes in S:

{x : x1 = · · · = xµ−1 = xµ = 1} and {x : x1 = · · · = xµ−1 = 1, xµ = 0},
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implying in turn that {x : x1 = · · · = xµ−1 = 1} is an infeasible hypercube of S. This implies that depth(C) ≥
r − (µ− 1) = r − µ+ 1. However, depth(C) = r − µ by Theorem 3.8, a contradiction.

Lemma 4.3. If V1 ∪ · · · ∪ Vk is an irreducible monochromatic cover for some integer k ∈ [r], then there exists

a monochromatic minimal cover B such that B ⊆
⋃k
i=1 Vi and |B ∩ Vi| = 1 for each i ∈ [k].

Proof. Denote by V the ground set of C. The proof of this lemma is very similar to Lemma 3.2, except for our

minimal choice. Out of all the monochromatic minimal covers of C contained in
⋃k
i=1 Vi, pick one of minimum

cardinality, call it B. As
⋃k
i=1 Vi is an irreducible monochromatic cover, it follows that B ∩ Vi 6= ∅, i ∈ [k]. To

finish the proof of the lemma, it suffices to show that |B∩V1| = 1. Suppose for a contradiction that |B∩V1| ≥ 2.

Let I := B − V1, J := V − (U1 ∪ V1 ∪ I), and C′ := C \ I/J , a minor over ground set U1 ∪ V1. Assume

in the first case that τ(C′) ≥ 2. Then C′ is clean and tangled, and G[U1 ∪ V1] ⊆ G(C′). Thus G(C′) is a

connected, bipartite graph whose bipartition is inevitably {U1, V1}. It therefore follows from Theorem 2.3 (i)

that U1, V1 ∈ C′. However, B ∩ V1 = B − I is a minimal cover of C′ disjoint from U1, a contradiction. Assume

in the remaining case that τ(C′) ≤ 1. That is, there is aD ∈ b(C) such thatD ⊆ U1∪V1∪I and |D−I| ≤ 1. As

D ⊆ (V1∪· · ·∪Vk)∪U1, and V1∪· · ·∪Vk is an irreducible monochromatic cover, it follows thatD ⊆
⋃k
i=1 Vi.

But then D is a monochromatic minimal cover of C contained in
⋃k
i=1 Vi and

|D| = |D − I|+ |D ∩ I| ≤ 1 + |B − (U1 ∪ V1)| < |B ∩ (U1 ∪ V1)|+ |B − (U1 ∪ V1)| = |B|,

a contradiction to our minimal choice of B. As a result, |B ∩ V1| = 1, as desired.

Theorem 4.4. Suppose for some integer k ∈ [r] that V1 ∪ · · · ∪ Vk is a cover of C. Then k ≥ µ. Moreover,

if k = µ, then V1 ∪ · · · ∪ Vk contains a minimal cover of cardinality k picking exactly one element from each

Vi, i ∈ [k].

Proof. That k ≥ µ follows from Theorem 3.3. If k = µ, then by Theorem 4.2, V1 ∪ · · · ∪ Vk is an irreducible

monochromatic cover, so by Lemma 4.3, V1 ∪ · · · ∪ Vk contains a minimal cover of cardinality three picking

exactly one element from each Vi, i ∈ [k], as claimed.

This theorem for the case of µ = 3 was proved in [7], Theorem 5.2, and served as an important tool for

finding the clutter of the lines of the Fano plane as a minor in clean tangled clutters.

4.2 Ideal tangled clutters

C is an ideal clutter if the associated set covering polyhedron

Q(C) :=

{
x ∈ RV+ :

∑
v∈C

xv ≥ 1 C ∈ C

}

is integral [12]. The deltas and extended odd holes are non-ideal clutters. It is well-known that a clutter is ideal

if and only if its blocker is ideal [15, 18]. In particular, the blocker of an extended odd hole is also non-ideal.

Moreover, if a clutter is ideal, so is every minor of it [21]. Thus ideal clutters are clean.
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Let C be an ideal tangled clutter, where G := G(C), r := rank(C), and denote by {Ui, Vi} the bipartition of

the ith connected component of G for i ∈ [r]. Let S := setcore(C : U1, V1; · · · ;Ur, Vr).

Theorem 4.5 ([3], Theorem 22a). conv(S) is described by 0 ≤ x ≤ 1, and∑
B∩Vi 6=∅

|B ∩ Vi|xi +
∑

B∩Uj 6=∅

|B ∩ Uj |(1− xj) ≥ 1

for every monochromatic cover B of C.

For the sake of completion, we have provided a proof of this theorem in the appendix.

Lemma 4.6. Consider a facet-defining inequality for conv(S) different from any of 0 ≤ x ≤ 1. Then the

inequality is of the form ∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1

for some disjoint I, J ⊆ [r] where
(
∪i∈I Ui

)
∪
(
∪j∈J Vj

)
is an irreducible monochromatic cover of C.

Proof. By Theorem 4.5, the inequality is of the form∑
B∩Vi 6=∅

|B ∩ Vi|xi +
∑

B∩Uj 6=∅

|B ∩ Uj |(1− xj) ≥ 1 (?)

for some monochromatic coverB of C. We may assume thatB ⊆ V1∪· · ·∪Vk, andB∩Vi 6= ∅ for each i ∈ [k].

By Theorem 3.3, k ≥ µ(C) ≥ 3.

We claim that the monochromatic cover V1 ∪ · · · ∪ Vk−1 ∪ Vk is irreducible. Suppose otherwise; say V1 ∪
· · · ∪ Vk−1 ∪ Uk is a monochromatic cover, too. Then these covers yield the following infeasible hypercubes in

S:

{x : x1 = · · · = xk−1 = xk = 0} and {x : x1 = · · · = xk−1 = 0, xk = 1},

implying in turn that {x : x1 = · · · = xk−1 = 0} is an infeasible hypercube of S, implying in turn that∑k−1
i=1 xi ≥ 1 is valid for conv(S). However,

∑
B∩Vi 6=∅

|B ∩ Vi|xi +
∑

B∩Uj 6=∅

|B ∩ Uj |(1− xj) =

k∑
i=1

|B ∩ Vi|xi ≥
k∑
i=1

xi, (�)

so the valid inequality
∑k−1
i=1 xi ≥ 1 dominates the facet-defining inequality (?), a contradiction.

Since V1∪· · ·∪Vk is an irreducible monochromatic cover, we may apply Theorem 4.4 to conclude that there

exists a minimal cover B′ ⊆ V1∪ · · ·∪Vk of C intersecting each Vi, i ∈ [k] exactly once. Thus, by Theorem 4.5,

k∑
i=1

xi =
∑

B′∩Vi 6=∅

|B′ ∩ Vi|xi ≥ 1

is valid for conv(S). Since (�) holds, and (?) is facet-defining, (?) must be of the form
∑k
i=1 xi ≥ 1, thereby

finishing the proof.
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A subset S ⊆ {0, 1}r is cube-ideal if its convex hull is described by 0 ≤ x ≤ 1, and some generalized set

covering inequalities, which are of the form
∑
i∈I xi +

∑
j∈J(1 − xj) ≥ 1 for disjoint I, J ⊆ [r]. It is known

that S is cube-ideal if, and only if, cuboid(S) is an ideal clutter [2]. Putting Theorem 4.5 and Lemma 4.6, we

get the following.

Theorem 4.7. Let C be an ideal tangled clutter. Then setcore(C) is a cube-ideal set, and core(C) is an ideal

clutter.

This theorem was first claimed in [4], Theorem 22, but the authors found a flaw in the proof [3].

4.3 The girth of a binary matroid

C is a binary clutter if the symmetric difference of any odd number of members contains a member; equivalently,

C is binary if |C ∩B| ≡ 1 (mod 2) for all C ∈ C, B ∈ b(C) [17]. In particular, a clutter is binary if and only if

its blocker is binary. Observe that the deltas, extended odd holes and their blockers are not binary. If a clutter is

binary, so is every minor of it [20]. Thus binary clutters are clean.

Remark 4.8. Take an integer r ≥ 1 and let S ⊆ {0, 1}r be a vector space over GF (2) whose points do not

agree on a coordinate. Then cuboid(S) is a clean tangled clutter.

Here we relate the monochromatic covering number of cuboid(S) to a natural matroidal parameter. To this

end, take an integer r ≥ 1 and let S ⊆ {0, 1}r be a vector space over GF (2). Basic Linear Algebra tells us

that there is a 0 − 1 matrix A with r columns such that S = {x : Ax ≡ 0 (mod 2)}. Let M be the binary

matroid over ground set EM := [r] that is represented by A. The cycle space of M is the set cycle(M) := S

and the cocycle space of M , denoted cocycle(M) ⊆ {0, 1}r, is the row space of A over GF (2). Notice that

cycle(M) , cocycle(M) are binary spaces that are orthogonal complements overGF (2). Observe that the binary

matroid M can be fully determined by either A, its cycle space or its cocycle space.

A cycle of M is a subset C ⊆ EM such that χC ∈ cycle(M), and a cocycle of M is a subset D ⊆ EM such

that χD ∈ cocycle(M). In particular, ∅ is both a cycle and a cocycle. Notice that every cycle and every cocycle

have an even number of elements in common. A circuit of M is a nonempty cycle that does not contain another

nonempty cycle, and a cocircuit of M is a nonempty cocycle that does not contain another nonempty cocycle.

It is well-known that every cycle is either empty or the disjoint union of some circuits, and that every cocycle is

either empty or the disjoint union of some cocircuits [19].

An element e ∈ EM is a loop of M if {e} is a circuit, and two distinct elements e, f ∈ EM are parallel

in M if {e, f} is a circuit. M is a simple binary matroid if it has no loop and no parallel elements, i.e. if every

circuit has cardinality at least three. IfM is simple, then its girth, denoted girth(M), is the minimum cardinality

of a circuit.

Theorem 4.9. Let M be a simple binary matroid, and let C := cuboid(cocycle(M)). Then µ(C) = girth(M).

Proof. Write EM = [r], and let S⊥ := cocycle(M), viewed as a subset of {0, 1}r. As S⊥ is a vector space

over GF (2), there is a 0 − 1 matrix B with r columns such that S⊥ =
{
x ∈ {0, 1}r : Bx ≡ 0 (mod 2)

}
.
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Observe that the row space of B over GF (2), which is the orthogonal complement of S⊥ over GF (2), is the

cycle space of M .

Claim. girth(M) = r −max{d : S⊥ has an infeasible hypercube of dimension d}.

Proof of Claim. Let g := girth(M) and d? := max{d : S⊥ has an infeasible hypercube of dimension d}. (≥)

Let C ⊆ [r] be a circuit of M of length g. We may assume that C = {1, . . . , g}. As C intersects every cocycle

an even number of times, it follows that S⊥ ∩ {x : x1 = · · · = xg−1 = 0, xg = 1} = ∅, so there is an infeasible

hypercube of dimension r− g, implying in turn that g ≥ r− d?. (≤) Pick I ⊆ [r] of cardinality r− d? such that

S⊥ ∩ {x : xi = ai ∀i ∈ I} = ∅ for some decisions ai ∈ {0, 1}, i ∈ I . As a result, the following linear system

of equations has no 0− 1 solution:

Bx ≡ 0 (mod 2) and xi ≡ ai (mod 2) ∀i ∈ I.

There must be an infeasibility certificate. That is, assuming B has m rows, there exist c ∈ {0, 1}m and di ∈
{0, 1}, i ∈ I such that

B>c+
∑
i∈I

diei ≡ 0 (mod 2) and
∑
i∈I

diai ≡ 1 (mod 2).

Let C be the cycle ofM such that χC = B>c. Then the first equation above tells us that C ⊆ I while the second

equation tells us that C 6= ∅. As a result, M has a nonempty cycle of length at most |I| = r − d?, implying in

turn that there is a circuit of length at most r − d?, so g ≤ r − d?, as required. ♦

As M has no loop, the points in S⊥ do not agree on a coordinate, so C = cuboid(S⊥) is a clean tangled

clutter by Remark 4.8. Moreover, as M has no parallel elements, girth(M) ≥ 3, so S⊥ has no infeasible

hypercube of dimension at least r − 2, by the claim above. We may therefore apply Remark 4.1 to conclude

that rank(C) = r and setcore(C) ∼= S⊥. It therefore follows from the claim above that girth(M) = rank(C)−
depth(C), so girth(M) = µ(C) by Theorem 3.8.

Given distinct elements e, f, g ∈ EM , if e, f are parallel and f, g are parallel, then so are e, g. A parallel

class of M is a maximal subset of EM of parallel elements. The simplification of M , denoted si(M), is the

binary matroid obtained from M after deleting all loops, and for every parallel class, keeping one representative

and deleting all the other elements. Observe that si(M) is a simple binary matroid.

Theorem 4.10. Let M be a binary matroid without a loop, and let C := cuboid(cocycle(M)). Then rank(C) is

equal to the number of parallel classes of M , and µ(C) = girth(si(M)).

Proof. This is a rather immediate consequence of Theorem 4.9. We leave this as an exercise for the reader.

Take an integer k ≥ 1. An important example of a binary matroid is the projective geometry M = PG(k −
1, 2) represented by the matrix A whose columns are {a ∈ {0, 1}k : a 6= 0}. The second projective geometry

PG(1, 1) is the graphic matroid of a triangle, while the third one PG(2, 1) is the Fano matroid. It can be
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readily checked that PG(k−1, 1) is a simple matroid where every element appears in a triangle, so in particular,

cuboid(cocycle(PG(k − 1, 2))) has monochromatic covering number 3. These clutters played a starring role

in [7].

4.4 The covering number of a clean clutter

Let us start with the following easy remark:

Remark 4.11. Neither a delta nor the blocker of an extended odd hole has a transversal of cardinality two.

Take an integer r ≥ 1 and a set S ⊆ {0, 1}r. For a point x ∈ {0, 1}r, the induced clutter of S with respect

to x, denoted ind(S4x), is the clutter over ground set [r] whose members are the inclusion-wise minimal sets

of {C ⊆ [r] : χC ∈ S4x}. Observe that S has 2r induced clutters, and that these clutters are in a one-to-one

correspondence with the 2r minors of cuboid(S) obtained after contracting, for each i ∈ [r], exactly one of

2i− 1, 2i (see [2]). It follows from Remark 4.11 that,

Remark 4.12. Take an integer r ≥ 1 and a set S ⊆ {0, 1}r whose induced clutters are clean. Then cuboid(S)

is clean.

S is up-monotone if for all x, y ∈ {0, 1}r such that x ≥ y, if y ∈ S then x ∈ S. An element of a clutter is

free if it is not contained in any member.

Remark 4.13 ([2], Remark 4.6). Take an integer r ≥ 1, an up-monotone set S ⊆ {0, 1}r, and a point x ∈
{0, 1}r. Then ind(S4x) is, after deleting free elements, equal to ind(S40)/{i ∈ [r] : xi = 1}.

Let A be a clutter over ground set [r]. The up-monotone set associated with A is the up-monotone set

{χC : C ⊆ [r] contains a member of A} ⊆ {0, 1}r. Notice that the induced clutter of this set with respect to 0

is A.

Theorem 4.14. Let A be a clean clutter such that τ(A) ≥ 3. Let S be the associated up-monotone set, and let

C := cuboid(S). Then C is clean and tangled, and µ(C) = τ(A).

Proof. As τ(A) > 1, the points in S do not agree on a coordinate, so C is tangled. As ind(S40) = A is clean,

it follows from Remark 4.13 that every induced clutter of S is clean, so C is clean by Remark 4.12. It remains to

prove that µ(C) = τ(A). To this end, label the ground set of A as [r] for some integer r ≥ 1, let τ := τ(A) and

d? := max{d : S has an infeasible hypercube of dimension d}.

Claim. τ = r − d?.

Proof of Claim. (≥) Let B ⊆ [r] be a cover ofA of cardinality τ . Then S ∩{x : xi = 0 ∀i ∈ B} = ∅, implying

in turn that d? ≥ r − τ . (≤) Pick I ⊆ [r] of cardinality r − d? such that S ∩ {x : xi = ai ∀i ∈ I} = ∅ for

some decisions ai ∈ {0, 1}, i ∈ I . As S is up-monotone, and as the infeasible hypercube above is maximum,

it follows that ai = 0 for all i ∈ I . As a result, I must be a cover of ind(S40) = A, implying in turn that

r − d? ≥ τ , as required. ♦
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In particular, as τ ≥ 3, S has no infeasible hypercube of dimension at least r − 2. We may therefore apply

Remark 4.1 and conclude that rank(C) = r and setcore(C) ∼= S. As a result, τ = rank(C) − depth(C) by the

claim above, implying that τ = µ(C) by Theorem 3.8, thereby finishing the proof.
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[5] A. Abdi, G. Cornuéjols, and D. Lee. Intersecting restrictions in clutters. Combinatorica, 40:605–623, 2020.
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A Proof of Theorem 4.5

Theorem A.1 ([3], Theorem 22a). Let C be an ideal tangled clutter over ground set V , where G := G(C),

r := rank(C), and denote by {Ui, Vi} the bipartition of the ith connected component of G for i ∈ [r]. Let

S := setcore(C : U1, V1; · · · ;Ur, Vr). Then conv(S) is described by 0 ≤ x ≤ 1, and∑
B∩Vi 6=∅

|B ∩ Vi|xi +
∑

B∩Uj 6=∅

|B ∩ Uj |(1− xj) ≥ 1

for every monochromatic cover B of C.

Proof. Denote by E the edge set of G. We know that

{χC : C ∈ core(C)} = {χC : C ∈ C} ∩
{
x : xu + xv = 1, {u, v} ∈ E

}
. (?)

Claim 1. conv{χC : C ∈ core(C)} = Q
(
b(C)

)
∩
{
x : xu + xv = 1, {u, v} ∈ E

}
.

Proof of Claim. (⊆) follows immediately from (?). (⊇) Pick a point x? in the set on the right-hand side. Clearly,

x? ∈ Q
(
b(C)

)
. Since C is ideal, so is b(C), implying that for some λ ∈ RC+ with

∑
C∈C λC = 1, we have that

x? ≥
∑
C∈C

λCχC .

Since for all {u, v} ∈ E, we have that x?u + x?v = 1 and {u, v} ∈ b(C), equality must hold above and by (?), if

λC > 0 then C ∈ core(C). Hence, x? ∈ conv{χC : C ∈ core(C)}, as required. ♦

For each i ∈ [r], pick ui ∈ Ui and vi ∈ Vi, and let C′ be the clutter over ground set {u1, v1, . . . , ur, vr}
obtained from core(C) after contracting V − {u1, v1, . . . , ur, vr}.

Claim 2. conv({χC : C ∈ C′}) can be described by z ≥ 0, zui
+ zvi = 1, i ∈ [r], and∑

B∩Vi 6=∅

|B ∩ Vi|zvi +
∑

B∩Uj 6=∅

|B ∩ Uj |zuj ≥ 1

for every monochromatic minimal cover B of C.

Proof of Claim. Observe that conv{χC : C ∈ C′} is the projection of conv{χC : C ∈ core(C)} onto the

coordinates {ui, vi : i ∈ [r]}. Thus, to give a description for conv{χC : C ∈ C′}, we may apply Fourier-

Motzkin Elimination to the description of conv{χC : C ∈ core(C)} given by Claim 1, thereby giving us the

claimed description. ♦

Claim 3. conv(S) is defined by 0 ≤ x ≤ 1, and∑
B∩Vi 6=∅

|B ∩ Vi|xi +
∑

B∩Uj 6=∅

|B ∩ Uj |(1− xj) ≥ 1

for every monochromatic minimal cover B of C.
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Proof of Claim. Observe that C′ ∼= cuboid(S). The claim therefore follows from Claim 2 by another application

of Fourier-Motzkin Elimination. ♦

Claim 3 finishes the proof.
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