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It is well known that the classical Markowitz model for portfolio optimization is extremely sensitive to

estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on

ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important issue is the

choice of the matrix that specifies this ellipsoid. In this paper we investigate the performance of diagonal

estimation-error matrices. We show that the class of diagonal estimation-error matrices can achieve an

arbitrarily small loss in the expected portfolio return as compared to the optimum. We then formulate the

problem of finding the best estimation error matrix as a bilevel program. Finally we analyze the use of

an identity matrix as the estimation-error matrix. The results of our simulation show that robust portfolio

models featuring an identity matrix as an estimation-error matrix outperform the classical Markowitz model

when the size of the uncertainty set is chosen properly.
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1. Introduction

Consider a portfolio optimization problem where we want to invest in n assets. If the return vector

r ∈ Rn is given, we formulate the problem as maximize{rTx : x ∈∆} where x ∈ Rn denotes the

fraction of investment in each asset and ∆ denotes the feasible region. In this paper we consider

∆ := {x∈Rn :
∑n

i=1 xi = 1, x≥ 0}. The constraints x≥ 0 restrict the model to portfolios with long

positions only. This problem has a trivial optimal solution: Only invest in the asset that has the

highest return.

In practice, however, the assets are risky and the return vector r is random. The classical mean-

variance portfolio optimization problem introduced by Markowitz (1952) addresses this issue by

maximizing the expected return of the portfolio subject to a constraint on the risk modeled as the

variance of the portfolio return.

maximize
x

µTx (1a)

subject to xTΣx≤ v (1b)

x∈∆. (1c)

Here, µ and Σ denote the expectation vector and covariance matrix of the asset returns, respec-

tively. In practice, µ and Σ are estimated, and it has been observed that the Markowitz model

tends to amplify estimation errors. In particular, small errors in µ may produce large changes

in portfolio holdings (see, e.g., Best and Grauer 1991, Chopra and Ziemba 1993, Michaud 2008).

Approaches to mitigate the effect of estimation errors in µ and Σ on portfolio construction have

lead to a vast literature. Among these we name Horst et al. (2001), Chopra (1993), Jagannathan

and Ma (2003), Goldfarb and Iyengar (2003), Tutuncu and Koenig (2004), Ceria and Stubbs (2006),

Scherer (2007), Garlappi et al. (2007), Kan and Zhou (2007), DeMiguel et al. (2009a), DeMiguel

et al. (2009b), Lim et al. (2012), and Ban et al. (2018). In this paper, we pursue this line of work,

focusing on the uncertainty in the µ estimates.

We assume that the expected return vector µ is unknown and belongs to an ellipsoidal uncer-

tainty set given by

U :=
{
µ∈Rn : (µ− µ̂)TΞ−1(µ− µ̂)≤ κ2

}
(2)
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where µ̂ is the estimated expected return and the positive definite matrix Ξ is referred to as the

estimation-error matrix. Using the uncertainty set U , we formulate the robust portfolio optimization

problem as follows

max
x∈X

min
µ∈U

{
µTx

}
(3)

where X denotes the feasible set (1b)− (1c). We assume that the covariance matrix Σ is known.

Consequently, X is the intersection of an ellipsoid with a simplex.

This problem can be reformulated following Ben-Tal and Nemirovski (1999) as

max
x∈X

{
µ̂Tx−κ

√
xTΞx

}
. (4)

We refer the reader to Goldfarb and Iyengar (2003), Tutuncu and Koenig (2004) and Fabozzi

et al. (2007) for more detailed discussions on robust portfolio optimization. The risk-like term

κ
√

xTΞx in formulation (4) can be interpreted as an estimation risk that must be considered by

risk-averse investors on top of the risk caused by the variance xTΣx of the portfolio return (Fabozzi

et al. 2007, p 371).

Our contribution. In this paper, we provide a theoretical analysis on the choice for the

estimation-error matrix Ξ in robust portfolio optimization. The literature on selecting/constructing

an estimation-error matrix is scarce (Gotoh and Takeda 2011). Stubbs and Vance (2005) provide

a comprehensive overview on practical approaches for computing estimation-error matrices. They

also recommend the use of diagonal estimation-error matrices to practitioners. On the other hand,

there are several studies in which a scalar multiple of Σ is used as the estimation-error matrix

(see, e.g., Scherer 2007, Garlappi et al. 2007, Olivares-Nadal and DeMiguel 2018). Among these,

Scherer (2007) has a skeptical take on robust optimization and shows that such a choice for Ξ is

equivalent to some other well known shrinkage approaches.

In our work, we begin by discussing the difference between true and actual frontier - a well

known approach that is used to quantify the impact of the estimation errors. We show that when

Ξ is a multiple of Σ, robust optimization cannot improve the actual performance of the Markowitz
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model. This analysis supports the recommendation of Stubbs and Vance (2005) where they claim

that such a choice is not used in practice and is not recommended. We then focus on the use of

diagonal estimation-error matrices and show that the class of diagonal estimation-error matrices

can achieve an arbitrarily small loss in the expected portfolio return as compared to the optimum.

We accomplish this by reformulating the optimality conditions of the robust portfolio problem

when we have a single expected return vector.

We then investigate diagonal estimation-error matrices in the presence of multiple expected

returns. To this end, we propose a bilevel model that computes the loss and we show that the

diagonal estimation-error matrices can achieve an arbitrarily small loss even when there are multiple

estimates for the expected return. The proposed bilevel model also provides a principled way to

construct estimation-error matrices using data, though it is a non-convex optimization problem

and it is difficult to solve in practice.

We finally focus on the use of an identity matrix for Ξ. This choice requires calibrating a single

parameter (κ) for the robust problem. We perform computational experiments to test whether

robust optimization can perform better than the Markowitz model. Our results demonstrate that

a good choice for κ can significantly improve the performance of the Markowitz model, especially

when the expected return estimates are not reliable.

The rest of the paper is organized as follows. We introduce true, estimated and actual frontiers in

Section 2. In Section 3, we show that robust optimization can improve on the actual performance.

We present the analysis of the robust optimization problem in Section 4. Section 5 generalizes the

analysis of the robust model to incorporate multiple expected returns. We analyze the use of an

identity matrix as estimation-error matrix in Section 6. Section 7 concludes the paper.

2. True, estimated, and actual frontiers

The sensitivity of mean-variance portfolio optimization models to estimation errors on the expected

asset returns is well documented in the literature (see, e.g., Best and Grauer 1991, Chopra 1993,

Michaud 2008). It is sometimes referred to as the error maximization tendency of mean-variance
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optimization. In order to quantify the effect of estimation errors, Broadie (1993) made a distinction

between true, estimated, and actual frontiers. A frontier plots the maximum expected return of

a portfolio of assets as a function of the risk threshold (Markowitz 1952). The true frontier is

computed by using the true expected returns of the assets, a quantity in fact unknown to the

decision maker. The estimated frontier is computed by using the estimated expected returns. It

describes what appears will be the expected return of a portfolio optimized based on the estimated

parameters. The actual frontier plots the expected return one actually achieves (using the true

expected returns) when one invests in the above portfolio (constructed using estimated expected

returns). We next describe how we compute these three frontiers.

We solve the problem maximize{µTx : (1b) − (1c)} to obtain the optimal solution x∗ where

µ is the true (but unknown to the investor) vector of expected asset returns. Using x∗, we con-

struct the true frontier µTx∗. Let µ̂ be the vector of estimated expected asset returns. We solve

maximize{µ̂Tx : (1b)−(1c)} to obtain the Markowitz solution estimate x̂M . Using x̂M , we construct

the estimated Markowitz frontier µ̂Tx̂M and the actual Markowitz frontier µTx̂M .
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(a) sample size = 1
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(b) sample size = 24

Figure 1 True, actual Markowitz, and estimated Markowitz frontiers.

In Figure 1, we illustrate the gap between the true and the actual frontiers on real-world data.

Details on the data set can be found in Appendix EC.1. We assume that the asset returns are

normally distributed with distribution Normal(µ,Σ). The vector µ̂ is the sample average of N
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random samples. Equivalently, we generate µ̂ from Normal(µ,Σ/N). We illustrate the cases N = 1

and N = 24. Each point in the figures represents the average value over 10000 trials. The dashed-

line represents the performance of the equal-weight portfolio where we invest equally in all the

assets. The expected return of the equal-weight portfolio is 0.0131. Another interesting portfolio

for comparison is the minimum variance portfolio, which has an expected return of 0.0122.

We see in Figure 1a that the actual performance of the Markowitz solution estimate is poor

when the sample size is equal to 1. In fact, the average expected return values are worse than the

equal-weight portfolio. On the other hand, we see that the performance of the Markowitz solution

estimate improves significantly in Figure 1b with more accurate return estimates with a sample size

of 24. As N goes to +∞, the actual Markowitz frontier converges to the true frontier. Furthermore,

we plot the estimated frontier in Figures 1a and 1b. We see that the estimated frontier is far away

from the true frontier so much that it is off the chart in Figure 1a.

Similarly, solving the robust optimization problem (4), we obtain the robust solution estimate

x̂R. Using x̂R, we construct the estimated robust frontier µ̂Tx̂R and the actual robust frontier µTx̂R.

A key aspect here is the modeler’s choice of the estimation-error matrix Ξ.

3. Robust optimization can improve the actual performance

A possible choice for Ξ is to make this matrix proportional to Σ, namely Ξ = ρΣ. Such an idea has

been proposed by Horst et al. (2001) and Garlappi et al. (2007). Notice however that, for solutions

x that satisfy the risk constraint xTΣx ≤ v at equality (which is the most interesting case), the

objective µ̂Tx−κ
√

xTΞx of the robust problem (4) becomes

µ̂Tx−κ
√

xTρΣx = µ̂Tx−κ√ρv.

The last term is just a constant, and therefore the robust problem reduces to the Markowitz model

(1). The estimation errors do not affect the optimal portfolio!

Garlappi et al. (2007) consider a variation of model (1) where the risk is not a hard constraint

xTΣx≤ v but instead a penalty in the objective, leading to the model maxx∈∆ µTx− γ xTΣx for
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a given penalty term γ ∈ R. Robustifying as in (4), this model becomes maxx∈∆ µTx− γ xTΣx−

κ
√

xTΞx. Garlappi et al. (2007) consider this model with Ξ = Σ. When κ = 0, this reduces to

the Markowitz model and when κ→+∞, it reduces to the minimum variance portfolio. In their

computational experiments, Garlappi et al. (2007) find that the minimum variance portfolio gives

the best results in terms of measures such as the expected return or the Sharpe ratio.

In the remainder of this paper, we consider choices for Ξ that can outperform both the Markowitz

portfolio and the minimum variance portfolio, using actual expected return as a measure.
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(a) Ξ = diag
(
[1,1,1,1,1,1,1, ε,1,1,1]
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(b) Ξ = diag
(
[1, ε,1,1,1,1,1, ε,1,1,1]

)
Figure 2 Robust frontiers of several Ξ matrices.

To illustrate the potential of robust optimization, we design an experiment showing that good

matrices Ξ exist, even among diagonal matrices with only two different diagonal entries. We con-

struct Ξ based on partial information on the true expected return µ. In particular, in Figures

2a− 2b, we let some entries of the estimation-error matrix equal to ε= 0.001 (κ= 1, sample size =

24). In Figure 2a, the entry corresponding to the asset with the highest true return is set to ε, and

in Figure 2b, the entries corresponding to the four assets with highest true return are set to ε.

The overall picture that we see in Figure 2 is that there is room for improvement if one is able

to choose a good matrix Ξ. It seems promising that the robust optimization can close the gap

between the actual Markowitz frontier and the true frontier.
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4. The class of diagonal estimation-error matrices

In this section, we focus on the class of diagonal estimation-error matrices. This choice is partly

motivated by the study of Stubbs and Vance (2005). The authors argue that it is difficult to

generate estimation-error matrices accurately, and they suggest that the use of simple diagonal

matrices is beneficial. A natural question to ask is: Do we loose in performance by restricting our

attention to diagonal matrices Ξ?

The issue boils down to the following: Given an estimate µ̂ of µ, can we always find a diagonal

matrix Ξ such that the resulting robust portfolio x̂R has an actual expected return very close to

the true expected return? To this end, we start examining the optimality conditions of (4).

4.1. Analysis of the robust portfolio optimization problem

We first write (4) as a convex optimization problem of the following form.

minimize
x

− µ̂Tx +
√

xTΞx (5a)

subject to xTΣx≤ v, (5b)

1Tx = 1, (5c)

−x≤ 0. (5d)

We next make some observations about (5). The proof of these observations are deferred to the

Appendix.

Proposition 1. Suppose that Ξ and Σ are positive definite. Then, the following statements are

true about (5).

1. It is a convex optimization problem with a strictly convex objective function. Therefore, the

optimal solution x̂R is unique.

2. It satisfies Slater’s condition.

3. It is sufficient to consider the optimality conditions for differentiable functions.
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We next derive the optimality conditions of (5). Let λ1 ∈ R, λ2 ∈ R, and λ3 ∈ Rn respectively

denote the Lagrangian multipliers of the constraints of (5). The Lagrangian function associated

with this problem is given below.

L
(
x, λ1, λ2,λ3

)
=−µ̂Tx +

√
xTΞx +λ1

(
xTΣx− v

)
+λ2

(
1Tx− 1

)
−
(
λ3
)T

x

Using the Lagrangian function, we can write the optimality conditions of (5).

−µ̂+
Ξx√
xTΞx

+ 2λ1Σx +λ21−λ3 = 0 (6a)

xTΣx≤ v (6b)

1Tx = 1 (6c)

−x≤ 0 (6d)

λ1 ≥ 0 (6e)

λ3 ≥ 0 (6f)

λ1
(
xTΣx− v

)
+
(
λ3
)T

x = 0 (6g)

When Ξ is a diagonal matrix, (6a) can be written as

−µ̂i +
ξixi√∑n

j=1 ξjx
2
j

+ 2λ1

n∑
j=1

σijxj +λ2−λ3
i = 0, i∈ [1, n] (7)

Here, ξ denotes the vector of diagonal entries of Ξ and [1, n] := {1, . . . , n}. Now, we introduce

additional variables and constraints to rewrite the square-root term in (7). Let

zi =
ξixi√∑n

j=1 ξjx
2
j

, i∈ [1, n]. (8)

Using this substitution, we rewrite (7) as

−µ̂i + zi + 2λ1

n∑
j=1

σijxj +λ2−λ3
i = 0, i∈ [1, n], (9a)

n∑
i=1

xizi = α, (9b)

ξixi = ziα, i∈ [1, n], (9c)
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zi ≥ 0, i∈ [1, n], (9d)

ξi > 0, i∈ [1, n], (9e)

α> 0 (9f)

We have the following result, its proof is deferred to Appendix EC.2.2.

Proposition 2. The system {(6b)− (6g), (9)} is a correct reformulation of the system (6).

4.2. Analysis of the loss due to estimation error

Given a solution estimate x̂, we define the loss in objective value in the following way.

loss(x̂) =µTx∗−µTx̂

A solution x̂R to the robust problem (4) depends on the expected return estimate µ̂ and the

estimation-error matrix Ξ. In this case we write

loss(µ̂,Ξ) =µTx∗−µTx̂R

The first question we want to answer is the following: Given any µ̂, does there exist a diagonal

Ξ matrix such that loss(µ̂,Ξ) is equal to zero. The following example shows that it is not always

possible to find such a diagonal matrix Ξ.

Example 1. Consider a two asset portfolio optimization problem. Let σ11 < v, σ22 > v. Let

µ1 >µ2. Clearly (x1 = 1, x2 = 0) is the true optimal solution. Suppose that µ̂2 > µ̂1.

It follows that we have λ1 = 0 because the risk constraint is not tight. Furthermore, λ3
1 = 0

because the non-negativity constraint of x1 is not active. We see that the optimality conditions are

satisfied except (6a). Using our reformulation idea, we must find a feasible solution to the following

system.

− µ̂1 + z1 +λ2 = 0

− µ̂2 + z2 +λ2−λ3
2 = 0

x1z1 +x2z2 = α
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ξ1x1 = z1α

ξ2x2 = z2α

ξ1, ξ2 > 0

z1, z2 ≥ 0

α> 0

We see that because x2 = 0 and α> 0, it must be that z2 = 0. Furthermore, we can rewrite the first

two equations in the following way by treating z1 and λ3
2 as slack variables.

λ2 ≤ µ̂1

λ2 ≥ µ̂2

This is impossible since µ̂2 > µ̂1. Because the true optimal solution is unique, we conclude there

does not exist ξ such that the robust portfolio optimization problem yields zero loss.

Our next result shows that even though it is not possible to reach zero loss, we can get arbitrarily

close to it.

Theorem 1. Given ε > 0, for every µ̂ there exists a diagonal Ξ matrix such that loss(µ̂,Ξ)≤ ε.

Proof. Let xmv := arg minx{xTΣx : x ∈ ∆} denote the minimum variance portfolio. Let xeq

denote the equal-weight portfolio, i.e. xi = 1/n, i∈ [1, n]. Pick δ ∈ (0,1) such that x̃ = δxmv + (1−

δ)xeq has a lower variance than the true optimal solution x∗. Clearly, all components of x̃ are

strictly greater than zero. Let x̃∗ = (1− ε̄)x∗+ ε̄x̃ for some ε̄ ∈ (0,1). Note that x̃∗ ∈ X and has a

lower variance than x∗, therefore it is a feasible solution to the portfolio problem.

Now, observe that the loss corresponding to x̃∗ is given by

loss(x̃∗) =
n∑
i=1

µi

(
x∗i − x̃∗i

)
=

n∑
i=1

µi

(
x∗i −

[
(1− ε̄)x∗i + ε̄x̃i

])
= ε̄

n∑
i=1

µi

(
x∗i − x̃i

)
= ε̄
(
µTx∗−µTx̃

)
> 0.
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Therefore, given ε, we can pick ε̄∈ (0,1) such that

ε̄≤ ε(
µTx∗−µTx̃

)
This pick ensures that loss(x̃∗)≤ ε.

It suffices to find ξ, λ1, λ2 and λ3 such that together with x̃∗ we have a solution that satisfies

the optimality conditions.

Let λ1 = 0, and λ3
i = 0 for all i∈ [1, n]. We see that all optimality conditions are satisfied except

(6a). Using the reformulation idea, we see that finding such ξ is equivalent to finding a solution to

the below system.

−µ̂i + zi +λ2 = 0, i∈ [1, n]

n∑
i=1

zix̃
∗
i = α

ξix̃
∗
i = ziα, i∈ [1, n]

ξi ≥ 0, i∈ [1, n]

zi ≥ 0, i∈ [1, n]

α≥ 0

Let λ2 < mini{µ̂i}. Let zi = µ̂i − λ2 for all i ∈ [1, n]. Then α =
∑n

i=1 zix̃
∗
i . We let ξi = ziα

x̃∗i
for all

i∈ [1, n]. Clearly, all ξi, zi, α are greater than zero. Therefore, ξ satisfies the optimality conditions

and this concludes the proof. �

Finally we conclude this section by stating a sufficient condition for obtaining zero loss.

Theorem 2. If all the assets are active in the true optimal solution, then for every µ̂ there

exists a diagonal Ξ matrix such that loss(µ̂,Ξ) = 0.

Proof. Without loss of generality, we assume that all elements of the given µ̂ are greater than

0. It suffices to find ξ, λ1, λ2 and λ3 such that together with x∗ we have a solution that satisfies

the optimality condition.
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Let λ1 = 0, λ2 = 0, and λ3
i = 0 for all i∈ [1, n]. Using the reformulation idea, we see that finding

such ξ is equivalent to finding a solution to the below system.

−µ̂i + zi = 0, i∈ [1, n]

n∑
i=1

zix
∗
i = α

ξix
∗
i = ziα, i∈ [1, n]

ξi > 0, i∈ [1, n]

zi ≥ 0, i∈ [1, n]

α> 0

Let zi = µ̂i for all i ∈ [1, n]. Then we have that α =
∑n

i=1 µ̂ix
∗
i . We let ξi = ziα

x∗i
for all i ∈ [1, n].

Clearly, all ξi, zi, α are greater than zero. Therefore, ξ satisfies the optimality conditions and this

concludes the proof. �

5. Finding the best estimation-error matrix

In this section, we generalize the results of the previous section to the situation where we have

several estimates µ̂1, . . . , µ̂T of µ. We consider a setup in the same spirit with the computational

experiments conducted to measure the performance of the robust optimization via an out-of-sample

simulation in Scherer (2007). In particular, we investigate the ability of the robust model to produce

portfolios that are close to the true optimal portfolio even when different estimated expected

returns are used as an input to the robust model.

We show that we can always find a diagonal matrix Ξ such that the resulting robust portfolios

x̂1, . . . , x̂T all have an actual expected return very close to the optimal expected return µTx∗ where

x∗ is the optimal portfolio computed using the true µ. To this end, we write a mathematical

program that outputs a matrix Ξ that achieves the minimum loss. We define the loss given a

collection of return estimates {µ̂t}Tt=1 and estimation-error matrix Ξ as

loss({µ̂t}Tt=1,Ξ) =
∑
t∈[1,T ]

(µTx∗−µTx̂R,t)

where x̂R,t denotes the optimal robust portfolio for t∈ [1, T ].
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5.1. A bilevel programming formulation

In this section, we describe the bilevel programming formulation that computes the best estimation-

error matrix Ξ for a given collection of return estimates {µ̂t}Tt=1.

The following parameters are used in the description of the bilevel model.

• µ : True expected return vector.

• Σ : True covariance matrix of the asset returns.

• µ̂t : Estimated return vector under trial t∈ [1, T ].

• v : Risk threshold.

• x∗(v) = arg maxx∈∆n

{
µTx : xTΣx≤ v

}
, The portfolio with maximum expected return for a

given risk threshold value v.

Let x̂t(v,Ξ, µ̂t) denote the optimal portfolio given that the estimated return vector is µ̂t,

estimation-error matrix is Ξ, and the risk threshold is v under trial t∈ [1, T ]. Note that this value

is obtained by solving a convex optimization problem of the form (4). Therefore, we have the

following bilevel program to compute the best Ξ that minimizes the loss.

minimize
Ξ

T∑
t=1

(
µTx∗(v)−µTx̂t(v,Ξ, µ̂t)

)
(10a)

subject to x̂t(v,Ξ, µ̂t) = arg max
x∈∆n

{
(µ̂t)Tx−

√
xTΞx : xTΣx≤ v

}
, t∈ [1, T ], (10b)

Ξ∈ Sn++. (10c)

In this formulation, Ξ is the upper-level decision variable, and each x̂t(v,Ξ, µ̂t) is a lower-level

decision variable. Note that we have as many lower-level problems as the number of trials we have.

The above bilevel program minimizes the sum of the difference between the value of the true

frontier, and the value of the actual frontier under each trial. Alternatively, one can use other

performance measures, for example minimizing the maximum of the differences. In this formulation,

we assume the risk threshold v is large enough that the lower-level problem is feasible. Our next

goal is to reformulate problem (10) as a single level optimization program.
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5.2. Reformulating (10) as a single level program

We know that robust portfolio optimization problem is a convex optimization program, it satisfies

Slater’s condition, and it has a unique solution, see Proposition 1. Therefore, we can use the

optimality conditions (6) to reformulate (10) as a single level program (Bard 1998).

minimize
Ξ,x̂T,λ1,t,λ2,t,λ3,t

T∑
t=1

(
µTx∗−µTxt

)
(11a)

subject to − µ̂t +
Ξxt√

(xt)TΞx
+ 2λ1,tΣxt +λ2,t1−λ3,t = 0, t∈ [1, T ], (11b)

(xt)TΣxt ≤ v, t∈ [1, T ], (11c)

1Txt = 1, t∈ [1, T ], (11d)

−xt ≤ 0, t∈ [1, T ], (11e)

λ1,t ≥ 0, t∈ [1, T ], (11f)

λ3,t ≥ 0, t∈ [1, T ], (11g)

λ1,t
(
(xt)TΣxt− v

)
+
(
λ3,t
)T

xt = 0, t∈ [1, T ], (11h)

Ξ∈ S++. (11i)

Note that in the above formulation, the optimality conditions are appended for each trial t∈ [1, T ].

The bilevel model (11) is a non-convex optimization problem due to the stationary point equa-

tions (11b) and the complementary slackness conditions (11h). We next present a reformulation

for (11) when Ξ is a positive definite diagonal matrix.

Using the earlier reformulation idea in Section 4, we can reformulate (11) so as to avoid the

square-root terms.

minimize
ξ,xt,λ1,t,λ2,t,λ3,t

(11a) (12a)

subject to (11c)− (11h) (12b)

− µ̂ti + zti + 2λ1,t

n∑
j=1

σijx
t
j +λ2,t−λ3,t

i = 0, i∈ [1, n], t∈ [T ], (12c)
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n∑
i=1

xtiz
t
i = αt, t∈ [T ], (12d)

ξix
t
i = ztiα

t, i∈ [n], t∈ [T ], (12e)

zti ≥ 0, i∈ [1, n], t∈ [T ], (12f)

αt > 0, t∈ [T ], (12g)

ξi > 0. (12h)

5.3. Analysis of the bilevel model

In this section, we show that the bilevel model (12) has always an optimal solution that yields

arbitrarily small loss.

Theorem 3. For every ε > 0 and {µ̂t}Tt=1, there exists a diagonal matrix Ξ such that

loss({µ̂}Tt=1,Ξ)≤ ε.

Proof. It suffices to find ξ, λ1,t, λ2,t, λ3,t, and xt such that they are feasible for (12), and all

the vectors xt are within a small neighborhood of x∗.

Let λ1,t = 0, and λ3,t
i = 0 for all i∈ [1, n] and t∈ [1, t]. Then (12c) can be written as

−µ̂ti + zti +λ2,t = 0, i∈ [1, n], t∈ [T ], (13)

Using (12h), we substitute xti = ztiα
t/ξi in (12g). We see that it suffices to solve the following system

to complete the proof.

∑
i∈[1,n]

(µ̂ti−λ2,t)2

ξi
= 1, t∈ [1, T ]. (14a)

zti ≥ 0, i∈ [1, n], t∈ [T ], (14b)

αt > 0, t∈ [T ], (14c)

ξi > 0. (14d)

Let x̃∗ be as in the proof of Theorem 1.

That is, x̃∗ is a feasible solution of (1) that satisfies the constraints xTΣx≤ v and x≥ 0 strictly

and is within a small ball of the true optimum x∗.
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Pick ξi =M/x̃∗i for some large M . With this choice, the equations in (14a) are written as

∑
i∈[1,n]

(µ̂ti−λ2,t)2

x̃∗i
=M, t∈ [1, T ]. (15)

For each t∈ [1, T ], start by letting λ2,t = mini∈[1,n]{µ̂ti} and decrease λ2,t until the equation in (15)

is satisfied. This will happen, because the left hand side in (15) is continuous and monotonically

increasing.

Now, let zti = µ̂ti−λ2,t. Let η > 0 be any positive real. Note that by choosing M sufficiently large,

we can guarantee that, for each t, all zti are within 1 + η of the smallest. Namely, for all i ∈ [1, n],

kt ≤ zti ≤ (1 + η)kt, where kt = minj z
t
j. This is because the µ̂ti are fixed whereas −λ2,t increases as

M increases.

For each t ∈ [1, T ], set αt = 1∑
i

zt
i
ξi

. Now let xti = αt × zti
ξi

. Note that we have
∑

i∈[1,n] x
t
i = 1 and

xti > 0. To show that xt is feasible, we only need to show that it satisfies the variance constraint.

This will follow from showing that xt is in a small neighborhood of x̃∗, which satisfies it strictly.

We have xti = αt× zti
ξi

= αt× zti x̃
∗
i

M
. Using our bounds on zti , we get

αtkt
M

x̃∗i ≤ xti ≤ (1 + η)
αtkt
M

x̃∗i .

Adding over i we get αtkt
M
≤ 1≤ (1 + η)α

tkt
M

. This implies

(1− η)x̃∗i ≤ xti ≤ (1 + η)x̃∗i .

This translates into a vanishing loss in the objective value as η goes to 0. And this concludes the

proof. �

We conclude this section by noting that despite the exciting theoretical results of Sections 4

and 5, the non-convex non-linear bilevel model is intractable to solve using the current state-of-

the-art software for global optimization. Developing an efficient method to solve the bilevel model

presented in this section remains a future work.
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6. Using the identity matrix as estimation-error matrix

The results of the previous sections demonstrate that one can focus on diagonal estimation-error

matrices and consequently deal with calibrating only n parameters in constructing the uncertainty

sets. In this section, we restrict our attention to the simplest diagonal estimation-error matrix, the

identity matrix. In this case, we only need to calibrate one parameter(κ), which is advantageous

for decision makers.

Our goal is to investigate whether using an identity matrix as the estimation-error matrix can

improve the performance of the classical Markowitz model. To this end, we perform a simulation

where we compare the out-of-sample performances of the two approaches. We generate samples

from the distribution Normal(µ,Σ/N). The value of N determines the accuracy of the samples

we generate (increasing N results in better estimates of the expected return). Then, we solve the

classical Markowitz model and the robust portfolio model for varying κ values and compare their

actual performances. When κ=∞, the robust portfolio becomes the equal-weight portfolio.

κ×N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ∞

1 13.0 18.3 19.3 19.4 19.3 19.2 19.1 19.0 18.9 18.9 18.4

3 7.8 13.7 16.3 17.2 17.4 17.4 17.2 17.0 16.8 16.7 15.1

N 6 5.3 10.1 13.1 14.6 15.2 15.3 15.2 15.0 14.8 14.6 11.4

12 3.6 7.0 9.6 11.3 12.2 12.5 12.6 12.4 12.2 11.9 5.8

24 2.4 4.6 6.4 7.8 8.7 9.1 9.2 9.0 8.7 8.3 -3.4

120 1.2 2.0 2.7 3.1 3.3 3.2 2.8 2.3 1.6 0.8 -59.2

Table 1 Percentage gap closed by the robust model when Ξ = I (v= 0.002).

Table 1 gives the result of our simulation. Each cell in Table 1 contains the percentage gap closed

by the robust solution compared to the Markowitz solution. Specifically, in each cell of Table 1, we

report (R̄−M̄)/(T −M̄) where R̄ denotes the actual performance of the robust solution estimates,

M̄ denotes the actual performance of the Markowitz solution estimates, and T denotes the true

return. For example, the entry 19.4 for N = 1 and κ×N = 0.4 is obtained by first computing the
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estimates M̄ = 0.01262 and R̄ = 0.01314. Similarly, for N = 120 and κ×N = 0.5, we have that

M̄ = 0.01395 and R̄= 0.01399 which yields the entry 3.3. The true return T is equal to 0.01535.

Note that for each cell, the values R̄ and M̄ are averages over 10000 trials; consequently, the

standard error for each cell in Table 1 is less than 0.5.

We see from Table 1 that the robust model can significantly outperform the Markowitz model

when κ lies in a wide range of values. This is interesting, because the identity matrix contains

no information about the problem or the relationship between the assets. Furthermore, the equal-

weight portfolio outperforms the Markowitz solution estimates up toN = 12. On the other hand, the

Markowitz solution estimates are better than equal-weight portfolio when we have more accurate

samples (i.e., N = 24 and N = 120). It is important to note that the robust solution estimates

are better than the Markowitz solution estimates even when the samples are very accurate (i.e.,

N = 120).

We repeat the experiments on a different data set based on four international equity indices.

We use the monthly returns for Canada, Switzerland, the United Kingdom and the United States

between 2004 and 2022. The data is obtained from Morgan Stanley Capital International (MSCI).

κ×N

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ∞

1 32.9 31.5 30.8 30.5 30.3 30.2 30.1 30.0 30.0 29.9 29.6

3 31.2 31.9 30.1 29.1 28.5 28.1 27.9 27.7 27.5 27.4 26.3

N 6 28.2 32.8 30.6 28.6 27.4 26.5 26.0 25.5 25.2 24.9 22.6

12 24.8 33.1 32.6 29.9 27.4 25.6 24.3 23.4 22.7 22.1 17.1

24 21.5 32.0 34.4 32.8 29.7 26.6 23.9 21.8 20.1 18.8 7.4

120 14.7 25.4 32.4 36.4 38.0 37.7 35.8 32.9 29.2 25.2 -63.3

Table 2 Percentage gap closed by the robust model when Ξ = I (v= 0.0013).

We see from Table 2 that the robust portfolios perform better than the portfolios obtained

from the classical Markowitz model. In this data set, the expected returns of the minimum vari-

ance portfolio and of the equal-weight portfolio are 0.00108 and 0.00473, respectively. The true
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expected return T is equal to 0.00559. We note that the Markowitz model beats the equal-weight

portfolio only when N = 120, whereas the robust model beats the equal-weight portfolio under all

N − κ×N combinations where κ×N is finite in Table 2. Furthermore, the minimum variance

portfolio is outperformed by both the Markowitz model and the robust model under all N −κ×N

combinations.

The results in Table 1 and 2 illustrate that the κ×N values that perform best vary between

0.2 and 0.7. We observe that keeping κ×N constant when N varies works well for improving the

actual performance of the portfolio. Not surprisingly, the need for robustification diminishes when

we have better estimates as N increases.

In order to understand the results better, we focus on two particular distributions N = 3 and

N = 24 when κ×N = 0.5 in Table 1. We present the averages M̄ and R̄ as a histogram. Figure
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(a) n= 3
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(b) n= 24

Figure 3 Histograms of the actual performances of Robust and Markowitz models.

3 provides a clearer picture for the superior performance of the robust model. We see that the

empirical distributions of the actual returns under the robust model have a smaller variance. On

the other hand, the actual returns under the Markowtiz model features outliers that perform very

poorly. As a result, the robust model outperforms the Markowitz model, and the difference is

significant.
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7. Conclusion

In this paper, we take a theoretical look at the robust portfolio optimization problem. Our main

contribution is to show that the family of diagonal estimation-error matrices is sufficiently rich to

achieve an arbitrarily small loss compared to the optimum expected return. We perform illustrative

computational experiments to show that even using an identity matrix can improve on the actual

performance of the Markowitz model when the size of the uncertainty set is correctly calibrated.

Our work is a step towards constructing better estimation-error matrices for robust portfolio

optimization. Our bilevel model can be used to construct good estimation-error matrices using the

available data. This will require developing a more efficient method to solve the bilevel model.

Another research direction would be a theoretical analysis on the use of identity matrices as

estimation-error matrices.
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E-Companion

EC.1. Data set

We use the data set provided in Kocuk and Cornuéjols (2020). The data set includes 360 monthly

returns of 11 sectors based on the Global Industrial Classification Standard. We calculate the true

return vector µ and the true covariance matrix Σ as the sample average and the sample covariance

matrix of these returns. We refer the reader to Kocuk and Cornuéjols (2020) for more details about

the dataset.

EC.2. Additional proofs

In this section, we present the additional proofs.

EC.2.1. Proof of Proposition 1

1. We know that there exists a matrix L such that Ξ = LLT, because Ξ is a positive definite

matrix. Therefore, the objective function f of (5) can be written as

f(x) =−(µ̂)Tx +
√

xTΞx (EC.1)

=−(µ̂)Tx + ‖xL‖2

To conclude the proof, it suffices to show that the norm function ‖ · ‖2 is strictly convex on

the feasible region of (5), because the composition with an affine mapping of a strictly convex

function is strictly convex.

To this end, we first note that any two distinct point in the feasible region of (5) are linearly

independent because of 1Tx = 1. Let λ∈ (0,1). We want to show that

‖λx1 + (1−λ)x2‖2 <λ‖x1‖2 + (1−λ)‖x2‖2

We take the square of both sides and observe that

‖λx1 + (1−λ)x2‖22 =
(
λx1 + (1−λ)x2, λx1 + (1−λ)x2

)
= λ2

(
x1,x1

)
+ (1−λ)2

(
x2,x2

)
+ 2λ(1−λ)

(
x1,x2

)



ec2 e-companion to Cornuéjols, Elçi, and Köppe: Portfolio optimization in the presence of estimation errors

= λ2‖x1‖22 + (1−λ)2‖x2‖22 + 2λ(1−λ)
(
x1,x2

)
<λ2‖x1‖22 + (1−λ)2‖x2‖22 + 2λ(1−λ)‖x1‖2‖x2‖2

= (λ‖x1‖2 + (1−λ)‖x2‖2)
2

The strict inequality above is true due to the fact that Cauchy-Schwarz inequality is strict

when x1 and x2 are linearly independent.

2. It is clear that the robust portfolio optimization problem (5) is a convex program. It suffices

to exhibit an interior point of the feasible region. We assume that v is strictly greater than the

minimum variance portfolio. Let xmv and xeq denote the minimum variance and the equal-

weight portfolios, respectively. There exists δ ∈ (0,1) such that the variance of x̃ = δxmv +(1−

δ)xeq is less than v. Clearly, all components of x̃ is greater than zero. Thus, x̃ is an exterior

point of the feasible region of (5).

3. The square-root function is non-differentiable only at the origin. We have that the objective

function (EC.1) is always differentiable in the feasible region of (5), because Ξ is positive

definite, and 1Tx = 1.

EC.2.2. Proof of Proposition 2

We want to show the equivalence of the system (6) and the system {(6b)− (6g), (9)}. We only

need to show given (Ξ,x, λ1, λ2,λ3) that satisfies (6) with Ξ is positive definite and diagonal, there

exists (z, α,ξ,x, λ1, λ2,λ3) that satisfies {(6b)− (6g), (9)}. The other direction is trivial since the

ξ vector in any feasible solution to {(6b)− (6g), (9)} is a diagonal estimation-error matrix that

satisfies the optimality conditions.

Let ξ denote the diagonal entries of Ξ. Because Ξ is positive definite, we know that all elements

of ξ are strictly greater than zero. It suffices to find (z, α) that satisfies (9), since (x, λ1, λ2,λ3)

automatically satisfies (6b)− (6g).

Consider any given x >= 0. Let P := {i ∈ [1, n] : xi > 0}. Let Z = [1, n] \ P . Since 1Tx = 1, we

know that P is non-empty. This implies that the right hand side of (9c) is positive for all i ∈ P .

Therefore, α must be positive.
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Now note that we can write (9b) as

α=
∑
i∈P

xizi +
∑
i∈Z

xizi

=
∑
i∈P

xizi

=
∑
i∈P

xi
ξixi
α

Thus we have that α=
√∑

i∈P xiξixi > 0. Accordingly, each zi assumes the value ξixi
α

for all i∈ P .

Letting each zi = 0 for all i∈Z concludes the proof.


