Disjunctive Cuts for Cross-Sections of the Second-Order Cone

Sercan Yıldız * Gérard Cornuéjols ${ }^{\dagger}$

June 10, 2014

Abstract

In this paper we provide a unified treatment of general two-term disjunctions on crosssections of the second-order cone. We derive a closed-form expression for a convex inequality that is valid for such a disjunctive set and show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and paraboloids, and split disjunctions on all cross-sections of the second-order cone. Our approach extends the work of Kılınç-Karzan and Yıldız on general two-term disjunctions for the second-order cone.

Keywords: Mixed-integer conic programming, second-order cone programming, cutting planes, disjunctive cuts

1 Introduction

In this paper we consider the mixed-integer second-order conic programming (MISOCP) problem

$$
\begin{equation*}
\sup \left\{d^{\top} x: A x=b, x \in \mathbb{L}^{n}, x_{j} \in \mathbb{Z} \forall j \in J\right\} \tag{1}
\end{equation*}
$$

where \mathbb{L}^{n} is the n-dimensional second-order cone $\mathbb{L}^{n}:=\left\{x \in \mathbb{R}^{n}:\left\|\left(x_{1} ; \ldots ; x_{n-1}\right)\right\|_{2} \leq x_{n}\right\}, A$ is an $m \times n$ real matrix of full row rank, d and b are real vectors of appropriate dimensions, and $J \subseteq\{1, \ldots, n\}$. The set S of feasible solutions to this problem is called a mixed-integer secondorder conic set. Because the structure of S can be very complicated, a first approach to solving (1) entails solving the relaxed problem obtained after dropping the integrality requirements on the variables:

$$
\sup \left\{d^{\top} x: A x=b, x \in \mathbb{L}^{n}\right\} .
$$

The set of feasible solutions

$$
C:=\left\{x \in \mathbb{L}^{n}: A x=b\right\}
$$

to this relaxed problem is called the continuous relaxation of S. Unfortunately, the continuous relaxation is often a poor approximation to the mixed-integer conic set, and tighter formulations are needed for the development of practical strategies for solving (11). An effective way to improve the approximation quality of the continuous relaxation C is to strengthen it with additional inequalities that are valid for S but not for the whole of C. Such valid inequalities can be derived by exploiting the integrality of the variables $x_{j}, j \in J$, and enhancing C with linear two-term disjunctions $l_{1}^{\top} x \geq l_{1,0} \vee l_{2}^{\top} x \geq l_{2,0}$ that are satisfied by all solutions in S. Valid inequalities that are obtained from disjunctions using this approach are known as disjunctive

[^0]cuts. In this paper we study two-term disjunctions on the set C and give closed-form expressions for the strongest disjunctive cuts that can be obtained from such disjunctions.

Disjunctive cuts were introduced by Balas in the context of mixed-integer linear programming (MILP) [3] and have since been the cornerstone of theoretical and practical achievements in integer programming. There has been a lot of recent interest in extending disjunctive cuttingplane theory from the domain of MILP to that of mixed-integer conic programming [1, 2, 4[16, 18. Several papers in the last few years have focused on deriving closed-form expressions for convex inequalities that fully describe the convex hull of a disjunctive second-order conic set in the space of the original variables [1, 2, 4, 5, 8, 10, 14, 16]. In this paper, we pursue a similar goal and study general two-term disjunctions on a cross-section C of the second-order cone. Given a disjunction $l_{1}^{\top} x \geq l_{1,0} \vee l_{2}^{\top} x \geq l_{2,0}$ on C, we let

$$
C_{1}:=\left\{x \in C: l_{1}^{\top} x \geq l_{1,0}\right\} \quad \text { and } \quad C_{2}:=\left\{x \in C: l_{2}^{\top} x \geq l_{2,0}\right\}
$$

In order to derive the tightest disjunctive cuts that can be obtained for S from the disjunction $C_{1} \cup C_{2}$, we study the closed convex hull $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. In particular, we are interested in convex inequalities that may be added to the description of C to obtain a characterization of $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. Our approach extends [14] and provides a unified treatment of general twoterm disjunctions on all cross-sections of the second-order cone. Such cross-sections include ellipsoids, paraboloids, and hyperboloids as special cases. This generalizes the work of [10, 15] on split disjunctions on cross-sections of the second-order cone and 4] on disjoint two-term disjunctions on ellipsoids. We note here that similar results on disjoint two-term disjunctions on cross-sections of the second-order cone were recently obtained independently in [8].

We first show in Section 2 that the continuous relaxation C can be assumed to be the intersection of a lower-dimensional second-order cone with a single hyperplane. In Section 3, we prove our main theorem (Theorem 3) characterizing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$.

Throughout the paper, we use conv $K, \overline{\operatorname{conv}} K$, cone K, and span K to refer to the convex hull, closed convex hull, conical hull, and linear span of a set K, respectively. We also use $\operatorname{bd} K$ and int K to refer the boundary and interior of K. Given a vector $u \in \mathbb{R}^{n}$, we let $\tilde{u}:=\left(u_{1} ; \ldots ; u_{n-1}\right)$ denote the subvector obtained by dropping its last entry.

2 Intersection of the Second-Order Cone with an Affine Subspace

Let $E:=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$ so that $C=\mathbb{L}^{n} \cap E$. We are going to use the following lemma to simplify our analysis. See also Section 2.1 of [5] for a similar result.
Lemma 1. Let V be a p-dimensional linear subspace of \mathbb{R}^{n}. The intersection $\mathbb{L}^{n} \cap V$ is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{p}.
Proof. Let $D \in \mathbb{R}^{n \times p}$ be a matrix whose columns form an orthonormal basis for V. By simple linear algebra, we can write

$$
\begin{aligned}
\mathbb{L}^{n} \cap V & =\left\{x \in \mathbb{L}^{n}: x=D y \text { for some } y \in \mathbb{R}^{p}\right\} \\
& =D \mathbb{K}^{p} \quad \text { where } \quad \mathbb{K}^{p}:=\left\{y \in \mathbb{R}^{p}: D y \in \mathbb{L}^{n}\right\}
\end{aligned}
$$

Let $D=\binom{\tilde{D}}{d_{n}^{\top}}$. Via the definition of \mathbb{L}^{n} and the orthonormality of the columns of D,

$$
\mathbb{K}^{p}=\left\{y \in \mathbb{R}^{p}: y^{\top}\left(I-2 d_{n} d_{n}^{\top}\right) y \leq 0, d_{n}^{\top} y \geq 0\right\}
$$

The matrix $I-2 d_{n} d_{n}^{\top}$ has at most one nonpositive eigenvalue. In particular, it is positive semidefinite if $2\left\|d_{n}\right\|_{2}^{2} \leq 1$ and indefinite with exactly one negative eigenvalue otherwise. In the first case, \mathbb{K}^{p} reduces to the origin or a half-line and so does $\mathbb{L}^{n} \cap V=D \mathbb{K}^{p}$. In the second case, $I-2 d_{n} d_{n}^{\top}$ admits a spectral decomposition of the form $Q^{\top} \operatorname{Diag}(\lambda) Q$ where $\lambda_{1} \geq \ldots \geq$ $\lambda_{p-1}>0>\lambda_{p}$ and Q is an orthonormal matrix whose last column is $d_{n} /\left\|d_{n}\right\|_{2}$. Using this decomposition, we can write

$$
\begin{aligned}
\mathbb{K}^{p} & =\left\{y \in \mathbb{R}^{p}: y^{\top} Q^{\top} \operatorname{Diag}(\lambda) Q y \leq 0, d_{n}^{\top} y \geq 0\right\} \\
& =\left\{y \in \mathbb{R}^{p}: \operatorname{Diag}\left(\lambda_{1}^{1 / 2} \ldots \lambda_{p-1}^{1 / 2}\left|\lambda_{p}\right|^{1 / 2}\right) Q^{\top} y \in \mathbb{L}^{p}\right\} .
\end{aligned}
$$

The matrix $\operatorname{Diag}\left(\lambda_{1}^{1 / 2} \ldots \lambda_{p-1}^{1 / 2}\left|\lambda_{p}\right|^{1 / 2}\right) Q^{\top}$ has an inverse H because the entries of $\left(\lambda_{1}^{1 / 2} \ldots \lambda_{p-1}^{1 / 2}\left|\lambda_{p}\right|^{1 / 2}\right)$ are all positive. Thus $\mathbb{K}^{p}=H \mathbb{L}^{p}$. The set $\mathbb{L}^{n} \cap V=D H \mathbb{L}^{p}$ is an injective linear transformation of \mathbb{L}^{p} because $Z:=D H$ has full column rank. Furthermore, Z admits a pseudo-inverse $Z^{+}:=\left(Z^{\top} Z\right)^{-1} Z^{\top}$ and $\mathbb{L}^{p}=Z^{+}\left(\mathbb{L}^{n} \cap V\right)$. This implies a linear bijection between \mathbb{L}^{p} and $\mathbb{L}^{n} \cap V$.

Lemma 1 implies that, when $b=0, C$ is either the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m}. The closed convex hull $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ can be described easily when C is a single point or a half-line. Furthermore, the problem of characterizing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ when C is a bijective linear transformation of \mathbb{L}^{n-m} can be reduced to that of convexifying an associated two-term disjunction on \mathbb{L}^{n-m}. We refer the reader to [14 for a study of disjunctive cuts that are obtained from two-term disjunctions on the second-order cone.

In the remainder, we focus on the case $b \neq 0$. Note that, whenever this is the case, we can permute and normalize the rows of (A, b) so that its last row reads $\left(a_{m}^{\top}, 1\right)$, and subtracting a multiple of $\left(a_{m}^{\top}, 1\right)$ from the other rows if necessary, we can write the remaining rows of (A, b) as $(\tilde{A}, 0)$. Therefore, we can assume that all components of b are zero except the last one. Isolating the last row of (A, b) from the others, we can then write

$$
E=\left\{x \in \mathbb{R}^{n}: \tilde{A} x=0, a_{m}^{\top} x=1\right\}
$$

Let $V:=\left\{x \in \mathbb{R}^{n}: \tilde{A} x=0\right\}$. By Lemma $1, \mathbb{L}^{n} \cap V$ is the origin, a half-line, or a bijective linear transformation of \mathbb{L}^{n-m+1}. Again, the first two cases are easy and not of interest in our analysis. In the last case, we can find a matrix D whose columns form an orthonormal basis for V and define a nonsingular matrix H such that $\left\{y \in \mathbb{R}^{n-m+1}: D y \in \mathbb{L}^{n}\right\}=H \mathbb{L}^{n-m+1}$ as in the proof of Lemma 1. Then we can represent C equivalently as

$$
\begin{aligned}
C & =\left\{x \in \mathbb{L}^{n}: x=D y, a_{m}^{\top} x=1\right\} \\
& =D\left\{y \in \mathbb{R}^{n-m+1}: D y \in \mathbb{L}^{n}, a_{m}^{\top} D y=1\right\} \\
& =D\left\{y \in \mathbb{R}^{n-m+1}: y \in H \mathbb{L}^{n-m+1}, a_{m}^{\top} D y=1\right\} \\
& =D H\left\{z \in \mathbb{L}^{n-m+1}: a_{m}^{\top} D H z=1\right\} .
\end{aligned}
$$

The set $C=\mathbb{L}^{n} \cap E$ is a bijective linear transformation of $\left\{z \in \mathbb{L}^{n-m+1}: a_{m}^{\top} D H z=1\right\}$. Furthermore, the same linear transformation maps any two-term disjunction in $\left\{z \in \mathbb{L}^{n-m+1}\right.$: $\left.a_{m}^{\top} D H z=1\right\}$ to a two-term disjunction in C. Thus, without any loss of generality, we can take $m=1$ in (11) and study the problem of describing $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ where

$$
\begin{align*}
C=\left\{x \in \mathbb{L}^{n}: a^{\top} x\right. & =1\}, \\
C_{1}=\left\{x \in C: l_{1}^{\top} x \geq l_{1,0}\right\}, \quad \text { and } \quad C_{2} & =\left\{x \in C: l_{2}^{\top} x \geq l_{2,0}\right\} . \tag{2}
\end{align*}
$$

3 Two-Term Disjunctions on Cross-Sections of the SecondOrder Cone

3.1 Preliminaries

Consider C, C_{1}, and C_{2} defined as in (2). The set C is an ellipsoid when $a \in \operatorname{int} \mathbb{L}^{n}$, a paraboloid when $a \in \operatorname{bd} \mathbb{L}^{n}$, a hyperboloid when $a \notin \pm \mathbb{L}^{n}$, and empty when $a \in-\mathbb{L}^{n}$.

When $C_{1} \subseteq C_{2}$, we have $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)=C_{2}$. Similarly, when $C_{1} \supseteq C_{2}$, we have $\overline{\overline{c o n v}}\left(C_{1} \cup\right.$ $\left.C_{2}\right)=C_{1}$. In the remainder we focus on the case where $C_{1} \nsubseteq C_{2}$ and $C_{1} \nsupseteq C_{2}$.

Assumption 1. $C_{1} \nsubseteq C_{2}$ and $C_{1} \nsupseteq C_{2}$.
We also make the following technical assumption.
Assumption 2. C_{1} and C_{2} are both strictly feasible.
The following simple observation underlies our approach.
Observation 1. Let C, C_{1}, and C_{2} be defined as in (2). Then $C_{1}=\left\{x \in C:\left(\beta_{1} l_{1}+\gamma_{1} a\right)^{\top} x \geq\right.$ $\left.\beta_{1} l_{1,0}+\gamma_{1}\right\}$ for any $\beta_{1}>0$ and $\gamma_{1} \in \mathbb{R}$. Similarly, $C_{2}=\left\{x \in C:\left(\beta_{2} l_{2}+\gamma_{2} a\right)^{\top} x \geq \beta_{2} l_{2,0}+\gamma_{2}\right\}$ for any $\beta_{2}>0$ and $\gamma_{2} \in \mathbb{R}$.

Observation 1 allows us to conclude

$$
C_{1}=\left\{x \in C:\left(l_{1}-l_{1,0} a\right)^{\top} x \geq 0\right\} \quad \text { and } \quad C_{2}=\left\{x \in C:\left(l_{2}-l_{2,0} a\right)^{\top} x \geq 0\right\} .
$$

Recall that by Assumption 1 we have $C_{1}, C_{2} \subsetneq C$ and by Assumption 2 the sets C_{1} and C_{2} are both strictly feasible. This implies $l_{i}-l_{i, 0} a \notin \pm \mathbb{L}^{n}$, or equivalently $\left\|\tilde{l}_{i}-l_{i, 0} \tilde{a}\right\|_{2}^{2}>\left(l_{i, n}-l_{i, 0} a_{n}\right)^{2}$, for $i \in\{1,2\}$. Let

$$
\begin{equation*}
\lambda_{i}:=\frac{1}{\sqrt{\left\|\tilde{l}_{i}-l_{i, 0} \tilde{a}\right\|_{2}^{2}-\left(l_{i, n}-l_{i, 0} a_{n}\right)^{2}}} \text { and } \quad c_{i}:=\lambda_{i}\left(l_{i}-l_{i, 0} a\right) \text { for } i \in\{1,2\} . \tag{3}
\end{equation*}
$$

Because $\lambda_{1}, \lambda_{2}>0$, we can write

$$
C_{1}=\left\{x \in C: c_{1}^{\top} x \geq 0\right\} \quad \text { and } \quad C_{2}=\left\{x \in C: c_{2}^{\top} x \geq 0\right\}
$$

This scaling ensures

$$
\begin{equation*}
\left\|\tilde{c}_{1}\right\|_{2}^{2}-c_{1, n}^{2}=\left\|\tilde{c}_{2}\right\|_{2}^{2}-c_{2, n}^{2}=1 \tag{4}
\end{equation*}
$$

In particular, it has the following consequences.
Remark 1. Let c_{1} and c_{2} satisfy (4). Then

$$
\begin{aligned}
\mathcal{M} & :=\left\|\tilde{c}_{1}\right\|_{2}^{2}-c_{1, n}^{2}-\left(\left\|\tilde{c}_{2}\right\|_{2}^{2}-c_{2, n}^{2}\right)=0 \\
\mathcal{N} & :=\left\|\tilde{c}_{1}-\tilde{c}_{2}\right\|_{2}^{2}-\left(c_{1, n}-c_{2, n}\right)^{2}=2-2\left(\tilde{c}_{1}^{\top} \tilde{c}_{2}-c_{1, n} c_{2, n}\right)
\end{aligned}
$$

Remark 2. Let C_{1} and C_{2}, defined as in (2), satisfy Assumption 1. Let c_{1} and c_{2} be defined as in (3). By Assumption 1 we have $c_{1}-c_{2} \notin \pm \mathbb{L}^{n}$. Indeed, $c_{1}-c_{2} \in \mathbb{L}^{n}$ implies that $\left(c_{1}-c_{2}\right)^{\top} x \geq 0$ for all $x \in \mathbb{L}^{n}$, and this implies $C_{1} \subseteq C_{2}$; similarly $c_{2}-c_{1} \in \mathbb{L}^{n}$ implies $C_{2} \subseteq C_{1}$. Hence,

$$
\mathcal{N}=\left\|\tilde{c}_{1}-\tilde{c}_{2}\right\|_{2}^{2}-\left(c_{1, n}-c_{2, n}\right)^{2}>0
$$

Let Q_{1} and Q_{2} be the relaxations of C_{1} and C_{2} to the whole cone \mathbb{L}^{n} :

$$
\begin{equation*}
Q_{1}:=\left\{x \in \mathbb{L}^{n}: c_{1}^{\top} x \geq 0\right\} \quad \text { and } \quad Q_{2}:=\left\{x \in \mathbb{L}^{n}: c_{2}^{\top} x \geq 0\right\} \tag{5}
\end{equation*}
$$

It is clear that Q_{1} and Q_{2} satisfy Assumptions 1 and 2 whenever C_{1} and C_{2} do. Furthermore, Q_{1} and Q_{2} are closed, convex, pointed cones, $\operatorname{so} \operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$ is always closed.

The following results from [14] are useful in proving our results.
Theorem 1. [14], Theorem 1 and Remark 3] Let Q_{1} and Q_{2}, defined as in (5), satisfy Assumptions 1 and 2 . Then the inequality

$$
\begin{equation*}
-\left(c_{1}+c_{2}\right)^{\top} x \leq \sqrt{\left(\left(c_{1}-c_{2}\right)^{\top} x\right)^{2}+\mathcal{N}\left(x_{n}^{2}-\|\tilde{x}\|^{2}\right)} \tag{6}
\end{equation*}
$$

is valid for $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$. Furthermore, this inequality is convex in \mathbb{L}^{n}.
This result implies in particular that (6) is valid for $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. The next proposition shows that (6) can be written in conic quadratic form in \mathbb{L}^{n} except in the region where both clauses of the disjunction are satisfied. Its proof is a simple extension of the proofs of Propositions 2 and 3 in [14] and therefore omitted. Let

$$
r:=\binom{\tilde{c}_{1}-\tilde{c}_{2}}{-c_{1, n}+c_{2, n}} .
$$

Proposition 1. [14], Propositions 2 and 3] Let Q_{1} and Q_{2}, defined as in (5), satisfy Assumptions 1 and 2. Let $x^{\prime} \in \mathbb{L}^{n}$ be such that $c_{1}^{\top} x^{\prime} \leq 0$ or $c_{2}^{\top} x^{\prime} \leq 0$. Then the following statements are equivalent:
i) x^{\prime} satisfies (6).
ii) x^{\prime} satisfies the conic quadratic inequality

$$
\begin{equation*}
\mathcal{N} x^{\prime}-2\left(c_{1}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n} . \tag{7}
\end{equation*}
$$

iii) x^{\prime} satisfies the conic quadratic inequality

$$
\begin{equation*}
\mathcal{N} x^{\prime}+2\left(c_{2}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n} \tag{8}
\end{equation*}
$$

Remark 3. When c_{1} and c_{2} satisfy (4), the inequalities (7) and (8) describe a cylindrical secondorder cone whose lineality space contains span $\{r\}$. This follows from Remark 1 by observing that

$$
\mathcal{N}=2-2\left(\tilde{c}_{1}^{\top} \tilde{c}_{2}-c_{1, n} c_{2, n}\right)=2 c_{1}^{\top} r=-2 c_{2}^{\top} r .
$$

The next theorem shows that a single inequality of the form (6) is in fact sufficient to describe $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$. This settles a case left open by Kılıç-Karzan and Yıldız [14].

Theorem 2. Let Q_{1} and Q_{2}, defined as in (5), satisfy Assumptions 1 and 2. Assume without any loss of generality that c_{1} and c_{2} have been scaled so that they satisfy (4). Then

$$
\begin{equation*}
\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)=\left\{x \in \mathbb{L}^{n}:-\left(c_{1}+c_{2}\right)^{\top} x \leq \sqrt{\left(\left(c_{1}-c_{2}\right)^{\top} x\right)^{2}+\mathcal{N}\left(x_{n}^{2}-\|\tilde{x}\|^{2}\right)}\right\} \tag{9}
\end{equation*}
$$

Proof. Let D denote the set on the right-hand side of (9). We already know that

$$
\begin{equation*}
-\left(c_{1}+c_{2}\right)^{\top} x \leq \sqrt{\left(\left(c_{1}-c_{2}\right)^{\top} x\right)^{2}+\mathcal{N}\left(x_{n}^{2}-\|\tilde{x}\|^{2}\right)} \tag{10}
\end{equation*}
$$

is valid for $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$. Hence, $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right) \subseteq D$. Let $x^{\prime} \in D$. If $x^{\prime} \in Q_{1} \cup Q_{2}$, then clearly $x^{\prime} \in \operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$. Therefore, suppose $x^{\prime} \in \mathbb{L}^{n} \backslash\left(Q_{1} \cup Q_{2}\right)$ is a point that satisfies (10). By Proposition 1, x^{\prime} satisfies

$$
\mathcal{N} x^{\prime}-2\left(c_{1}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n} \quad \text { and } \quad \mathcal{N} x^{\prime}+2\left(c_{2}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n}
$$

We are going to show that x^{\prime} belongs to $\operatorname{conv}\left(Q_{1} \cup Q_{2}\right)$.
By Remarks 2 and 3, $0<\mathcal{N}=2 c_{1}^{\top} r=-2 c_{2}^{\top} r$. Let

$$
\begin{array}{ll}
\alpha_{1}:=\frac{-c_{1}^{\top} x^{\prime}}{c_{1}^{\top} r}, & \alpha_{2}:=\frac{-c_{2}^{\top} x^{\prime}}{c_{2}^{\top} r} \tag{11}\\
x_{1}:=x^{\prime}+\alpha_{1} r, & x_{2}:=x^{\prime}+\alpha_{2} r .
\end{array}
$$

It is not difficult to see that $c_{1}^{\top} x_{1}=c_{2}^{\top} x_{2}=0$. Furthermore, $x^{\prime} \in \operatorname{conv}\left\{x_{1}, x_{2}\right\}$ because $\alpha_{2}<0<\alpha_{1}$. Therefore, the only thing we need to show is $x_{1}, x_{2} \in \mathbb{L}^{n}$. By Remark 3

$$
\mathcal{N} r-2\left(c_{1}^{\top} r\right) r=\mathcal{N} r+2\left(c_{2}^{\top} r\right) r=0 .
$$

Hence,

$$
\begin{aligned}
& \mathcal{N} x_{1}-2\left(c_{1}^{\top} x_{1}\right) r=\mathcal{N} x^{\prime}-2\left(c_{1}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n} \quad \text { and } \\
& \mathcal{N} x_{2}+2\left(c_{2}^{\top} x_{2}\right) r=\mathcal{N} x^{\prime}+2\left(c_{2}^{\top} x^{\prime}\right) r \in \mathbb{L}^{n} .
\end{aligned}
$$

Now observing that $c_{1}^{\top} x_{1}=c_{2}^{\top} x_{2}=0$ and $\mathcal{N}>0$ shows $x_{1}, x_{2} \in \mathbb{L}^{n}$. This proves $x_{1} \in Q_{1}$ and $x_{2} \in Q_{2}$.

In the next section we show that the inequality (6) is also sufficient to describe $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ when the sets C_{1} and C_{2} satisfy certain conditions.

3.2 The Disjunctive Cut

In Theorem 3 we present the main result of this paper. Its proof requires the following technical lemma.

Lemma 2. Let C_{1} and C_{2}, defined as in (2), satisfy Assumptions 1 and 2. Let c_{1} and c_{2} be defined as in (3). Suppose $a^{\top} r \neq 0$, and let $x^{*}:=\frac{r}{a^{\top} r}$. Let $x^{\prime} \in C \backslash\left(C_{1} \cup C_{2}\right)$ satisfy (6).
a) If $a^{\top} r>0$, then $c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$. If in addition

$$
\begin{gather*}
\left(a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset, \quad \text { or } \quad\left(-a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset, \quad \text { or } \\
\left(-a+\operatorname{cone}\left\{c_{2}\right\}\right) \cap-\mathbb{L}^{n} \neq \emptyset, \tag{12}
\end{gather*}
$$

then $c_{2}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$.
b) If $a^{\top} r<0$, then $c_{2}^{\top}\left(x^{\prime}-x^{*}\right)<0$. If in addition

$$
\begin{gather*}
\left(a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset, \quad \text { or } \quad\left(-a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset, \quad \text { or } \\
\left(-a+\operatorname{cone}\left\{c_{1}\right\}\right) \cap-\mathbb{L}^{n} \neq \emptyset, \tag{13}
\end{gather*}
$$

then $c_{1}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$.
Proof. By Remarks 2 and 3, $\mathcal{N}=2 c_{1}^{\top} r=-2 c_{2}^{\top} r>0$. From this, we get

$$
\begin{align*}
\mathcal{N} x^{*}-2\left(c_{1}^{\top} x^{*}\right) r & =\frac{1}{a^{\top} r}\left(\mathcal{N}-2 c_{1}^{\top} r\right) r \tag{14}
\end{align*}=0, ~=\frac{1}{\mathcal{N} x^{*}+2\left(c_{2}^{\top} x^{*}\right) r=\frac{1}{a^{\top} r}\left(\mathcal{N}+2 c_{2}^{\top} r\right) r=0 .}
$$

Furthermore, $a^{\top} x^{\prime}=a^{\top} x^{*}=1$.
a) Having $x^{\prime} \notin C_{1}$ implies $c_{1}^{\top} x^{\prime}<0$. Furthermore, it follows from $c_{1}^{\top} r=\frac{\mathcal{N}}{2}>0$ that

$$
c_{1}^{\top} x^{*}=\frac{c_{1}^{\top} r}{a^{\top} r}>0 .
$$

Thus, we get $c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$.
Now suppose $\left(a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset$. Then there exist $\lambda \geq 0$ and $0 \leq \theta \leq 1$ such that $a+\lambda\left(\theta c_{1}+(1-\theta) c_{2}\right) \in \mathbb{L}^{n}$. The point x^{\prime} does not belong to either C_{1} or C_{2} and satisfies (6). By Proposition 1, it satisfies (8) as well. Using (15), we can write

$$
\begin{equation*}
\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r \in \mathbb{L}^{n} . \tag{16}
\end{equation*}
$$

Because \mathbb{L}^{n} is self-dual, we get

$$
\begin{aligned}
0 & \leq\left(a+\lambda\left(\theta c_{1}+(1-\theta) c_{2}\right)\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r\right) \\
& =2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\lambda\left(\theta c_{1}+(1-\theta) c_{2}\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r\right) \\
& =2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\lambda \theta\left(c_{1}-c_{2}\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r\right)+\lambda c_{2}^{\top}\left(x^{\prime}-x^{*}\right)\left(\mathcal{N}+2 c_{2}^{\top} r\right) \\
& =2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\lambda \theta\left(c_{1}-c_{2}\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r\right) \\
& =2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\lambda \theta\left(\mathcal{N}\left(c_{1}-c_{2}\right)^{\top}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right)\left(c_{1}-c_{2}\right)^{\top} r\right) \\
& =2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\lambda \theta\left(\mathcal{N}\left(c_{1}+c_{2}\right)^{\top}\left(x^{\prime}-x^{*}\right)\right) \\
& =\left(2 a^{\top} r+\lambda \theta \mathcal{N}\right) c_{2}^{\top}\left(x^{\prime}-x^{*}\right)+\lambda \theta \mathcal{N} c_{1}^{\top}\left(x^{\prime}-x^{*}\right)
\end{aligned}
$$

where we have used $a^{\top}\left(x^{\prime}-x^{*}\right)=0$ to obtain the first equality, $\mathcal{N}+2 c_{2}^{\top} r=0$ to obtain the third equality, and $\left(c_{1}-c_{2}\right)^{\top} r=\mathcal{N}$ to obtain the fifth equality. Now it follows from $2 a^{\top} r+\lambda \theta \mathcal{N}>0, c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$, and $\lambda \theta \mathcal{N} \geq 0$ that $c_{2}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$.
Now suppose $\left(-a+\operatorname{cone}\left\{c_{1}, c_{2}\right\}\right) \cap \mathbb{L}^{n} \neq \emptyset$, and let $\lambda \geq 0$ and $0 \leq \theta \leq 1$ be such that $-a+\lambda\left(\theta c_{1}+(1-\theta) c_{2}\right) \in \mathbb{L}^{n}$. By Proposition 1, x^{\prime} satisfies (7), and using (14), we can write

$$
\begin{equation*}
\mathcal{N}\left(x^{\prime}-x^{*}\right)-2 c_{1}^{\top}\left(x^{\prime}-x^{*}\right) r \in \mathbb{L}^{n} . \tag{17}
\end{equation*}
$$

As before, because \mathbb{L}^{n} is self-dual, we get

$$
0 \leq\left(-a+\lambda\left(\theta c_{1}+(1-\theta) c_{2}\right)\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)-2 c_{1}^{\top}\left(x^{\prime}-x^{*}\right) r\right)
$$

The right-hand side of this inequality is identical to

$$
\left(2 a^{\top} r+\lambda(1-\theta) \mathcal{N}\right) c_{1}^{\top}\left(x^{\prime}-x^{*}\right)+\lambda(1-\theta) \mathcal{N} c_{2}^{\top}\left(x^{\prime}-x^{*}\right) .
$$

It follows from $2 a^{\top} r+\lambda(1-\theta) \mathcal{N}>0, c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$, and $\lambda(1-\theta) \mathcal{N} \geq 0$ that $c_{2}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$. Finally suppose $\left(-a+\operatorname{cone}\left\{c_{2}\right\}\right) \cap-\mathbb{L}^{n} \neq \emptyset$, and let $\theta \geq 0$ be such that $-a+\theta c_{2} \in-\mathbb{L}^{n}$. Then using (16),

$$
\begin{aligned}
0 & \geq\left(-a+\theta c_{2}\right)^{\top}\left(\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r\right) \\
& =-2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r+\theta c_{2}^{\top}\left(x^{\prime}-x^{*}\right)\left(\mathcal{N}+2 c_{2}^{\top} r\right) \\
& =-2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) a^{\top} r .
\end{aligned}
$$

It follows from $a^{\top} r>0$ that $c_{2}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$.
b) If $a^{\top} r<0$, then $a^{\top}(-r)>0$. Since $-r:=\binom{\tilde{c}_{2}-\tilde{c}_{1}}{-c_{2, n}+c_{1, n}}$, b) follows from a) by interchanging the roles of C_{1} and C_{2}.

Remark 4. The conditions (12) and (13) are directly related to the sufficient conditions that guarantee the closedness of the convex hull of a two-term disjunction on \mathbb{L}^{n} explored in [14]. In particular, one can show that the convex hull of the disjunction $h_{1}^{\top} x \geq h_{1,0} \vee h_{2}^{\top} x \geq h_{2,0}$ on \mathbb{L}^{n} is closed if
i) $h_{1,0}=h_{2,0} \in\{ \pm 1\}$ and there exists $0<\mu<1$ such that $\mu h_{1}+(1-\mu) h_{2} \in \mathbb{L}^{n}$, or
ii) $h_{1,0}=h_{2,0}=-1$ and $h_{1}, h_{2} \in-\operatorname{int} \mathbb{L}^{n}$.

Letting $h_{i}:=a+\theta_{i} c_{i}$ and $h_{i, 0}:=1\left(h_{i}:=-a+\theta_{i} c_{i}\right.$ and $\left.h_{i, 0}:=-1\right)$ for some $\theta_{i}>0$ for both $i \in\{1,2\}$ leads to the conditions (12) and (13).

In the next result we show that the inequality (6) is sufficient to describe $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ when the conditions (12) and (13) hold.

Theorem 3. Let C_{1} and C_{2}, defined as in (2), satisfy Assumptions 1 and 2. Let c_{1} and c_{2} be defined as in (3). Suppose also that one of the following conditions is satisfied:
a) $a^{\top} r=0$,
b) $a^{\top} r>0$ and (12) holds,
c) $a^{\top} r<0$ and (13) holds.

Then

$$
\begin{equation*}
\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)=\{x \in C: x \text { satisfies (6) }\} . \tag{18}
\end{equation*}
$$

Proof. Let D denote the set on the right-hand side of (18). The inequality (6) is valid for $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ by Theorem 11. Hence, $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right) \subseteq D$. Let $x^{\prime} \in D$. If $x^{\prime} \in C_{1} \cup C_{2}$, then clearly $x^{\prime} \overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$. Therefore, suppose $x^{\prime} \in C \backslash\left(C_{1} \cup C_{2}\right)$ is a point that satisfies (6). By Proposition 1, it satisfies (7) and (8) as well. We are going to show that in each case x^{\prime} belongs to $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$.
a) Suppose $a^{\top} r=0$. By Remarks 2 and $3, \mathcal{N}=2 c_{1}^{\top} r=-2 c_{2}^{\top} r>0$. Define $\alpha_{1}, \alpha_{2}, x_{1}$, and x_{2} as in (11). It is not difficult to see that $a^{\top} x_{1}=a^{\top} x_{2}=1$ and $c_{1}^{\top} x_{1}=c_{2}^{\top} x_{2}=0$. Furthermore, $x^{\prime} \in \operatorname{conv}\left\{x_{1}, x_{2}\right\}$ because $\alpha_{2}<0<\alpha_{1}$. One can show that $x_{1}, x_{2} \in \mathbb{L}^{n}$ using the same arguments as in the proof of Theorem 2. This proves $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$.
b) Suppose $a^{\top} r>0$ and (12) holds. Let $x^{*}:=\frac{r}{a^{\top} r}$. Then by Lemma 2, $c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$ and $c_{2}^{\top}\left(x^{\prime}-x^{*}\right) \geq 0$.
First, suppose $c_{2}^{\top}\left(x^{\prime}-x^{*}\right)>0$, and let

$$
\begin{array}{ll}
\alpha_{1}:=\frac{-c_{1}^{\top} x^{\prime}}{c_{1}^{\top}\left(x^{\prime}-x^{*}\right)}, & \alpha_{2}:=\frac{-c_{2}^{\top} x^{\prime}}{c_{2}^{\top}\left(x^{\prime}-x^{*}\right)}, \tag{19}\\
x_{1}:=x^{\prime}+\alpha_{1}\left(x^{\prime}-x^{*}\right), & x_{2}:=x^{\prime}+\alpha_{2}\left(x^{\prime}-x^{*}\right) .
\end{array}
$$

As in part a), $a^{\top} x_{1}=a^{\top} x_{2}=1, c_{1}^{\top} x_{1}=c_{2}^{\top} x_{2}=0$, and $x^{\prime} \in \operatorname{conv}\left\{x_{1}, x_{2}\right\}$ because $\alpha_{1}<0<$ α_{2}. To show $x_{1}, x_{2} \in \mathbb{L}^{n}$, first note $\mathcal{N} x^{*}-2\left(c_{1}^{\top} x^{*}\right) r=\mathcal{N} x^{*}+2\left(c_{2}^{\top} x^{*}\right) r=0$ as in (14) and (15). Using this and $c_{1}^{\top} x_{1}=c_{2}^{\top} x_{2}=0$, we get

$$
\begin{aligned}
& \mathcal{N} x_{1}=\mathcal{N} x_{1}-2\left(c_{1}^{\top} x_{1}\right) r=\left(1+\alpha_{1}\right)\left(\mathcal{N} x^{\prime}-2\left(c_{1}^{\top} x^{\prime}\right) r\right), \\
& \mathcal{N} x_{2}=\mathcal{N} x_{2}+2\left(c_{2}^{\top} x_{2}\right) r=\left(1+\alpha_{2}\right)\left(\mathcal{N} x^{\prime}+2\left(c_{2}^{\top} x^{\prime}\right) r\right)
\end{aligned}
$$

Clearly, $1+\alpha_{2}>0$, so $\mathcal{N} x_{2} \in \mathbb{L}^{n}$. Furthermore,

$$
1+\alpha_{1}=\frac{-c_{1}^{\top} x^{*}}{c_{1}^{\top}\left(x^{\prime}-x^{*}\right)}=\frac{-c_{1}^{\top} r}{\left(a^{\top} r\right) c_{1}^{\top}\left(x^{\prime}-x^{*}\right)}=\frac{-\mathcal{N}}{2\left(a^{\top} r\right) c_{1}^{\top}\left(x^{\prime}-x^{*}\right)}>0
$$

where we have used the relationships $\mathcal{N}>0, a^{\top} r>0$, and $c_{1}^{\top}\left(x^{\prime}-x^{*}\right)<0$ to reach the inequality. It follows that $\mathcal{N} x_{2} \in \mathbb{L}$ as well. Because $\mathcal{N}>0$, we get $x_{1}, x_{2} \in \mathbb{L}^{n}$. This proves $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$.
Now suppose $c_{2}^{\top}\left(x^{\prime}-x^{*}\right)=0$, and define α_{1} and x_{1} as in (19). All of the arguments that we have just used to show $\alpha_{1}<0$ and $x_{1} \in C_{1}$ continue to hold. Using $\mathcal{N} x^{*}+2 c_{2}^{\top} x^{*} r=0$, we can write

$$
\mathcal{N}\left(x^{\prime}-x^{*}\right)=\mathcal{N}\left(x^{\prime}-x^{*}\right)+2 c_{2}^{\top}\left(x^{\prime}-x^{*}\right) r \in \mathbb{L}^{n}
$$

Because $\mathcal{N}>0$, we get $x^{\prime}-x^{*} \in \mathbb{L}^{n}$. Together with $c_{2}^{\top}\left(x^{\prime}-x^{*}\right)=0$ and $a^{\top}\left(x^{\prime}-x^{*}\right)=0$, this implies $x^{\prime}-x^{*} \in \operatorname{rec} C_{2}$. Then $x^{\prime}=x_{1}-\alpha_{1}\left(x^{\prime}-x^{*}\right) \in C_{1}+\operatorname{rec} C_{2}$ because $\alpha_{1}<0$. The claim now follows from the fact that the last set is contained in $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ (see, e.g., [17, Theorem 9.8]).
c) Suppose $a^{\top} r<0$ and (13) holds. Since $-r:=\binom{\tilde{c}_{2}-\tilde{c}_{1}}{-c_{2, n}+c_{1, n}}$, c) follows from b) by interchanging the roles of C_{1} and C_{2}.

The following result shows that when C is an ellipsoid or a paraboloid, any two-term disjunction can be convexified by adding the cut (6) to the description of C.

Corollary 1. Let C_{1} and C_{2}, defined as in (2), satisfy Assumptions 1 and 2. Let c_{1} and c_{2} be defined as in (3). If $a \in \mathbb{L}^{n}$, then (18) holds.

Proof. The result follows from Theorem 3 after observing that conditions (12) and (13) are trivially satisfied for any c_{1} and c_{2} when $a \in \mathbb{L}^{n}$.

The case of a split disjunction is particularly relevant in the solution of MISOCP problems, and it has been studied by several groups recently, in particular Dadush et al. [10], Andersen and Jensen [1], Belotti et al. [4], Modaresi et al. 15]. Theorem 3 has the following consequence for a split disjunction.

Corollary 2. Consider C_{1} and C_{2} defined by a split disjunction on C as in (2). Suppose Assumptions 1 and 2 hold. Let c_{1} and c_{2} be defined as in (3). Then (18) holds.
Proof. Let $l_{1}^{\top} x \geq l_{1,0} \vee l_{2}^{\top} x \geq l_{2,0}$ define a split disjunction on C with $l_{2}=-t l_{1}$ for some $t>0$. Then we have $t l_{1,0}>-l_{2,0}$ so that $C_{1} \cup C_{2} \neq C$. Let $\lambda_{1}, \lambda_{2}, c_{1}$, and c_{2} be defined as in (3). Let $\theta_{2}:=\frac{1}{\lambda_{2}\left(t l_{1,0}+l_{2,0}\right)}$ and $\theta_{1}:=\frac{t \lambda_{2} \theta_{2}}{\lambda_{1}}$. Then

$$
a+\theta_{1} c_{1}+\theta_{2} c_{2}=a+\lambda_{2} \theta_{2}\left(t\left(l_{1}-l_{1,0} a\right)+\left(l_{2}-l_{2,0} a\right)\right)=0 \in \mathbb{L}^{n} .
$$

The result now follows from Theorem 3 after observing that $\theta_{1}, \theta_{2} \geq 0$ imply that conditions (12) and (13) are satisfied.

When the sets C_{1} and C_{2} do not intersect, except possibly on their boundary, Proposition 1 says that (6) can be expressed in conic quadratic form and directly implies the following result.

Corollary 3. Let C_{1} and C_{2}, defined as in (2), satisfy Assumptions 1 and 2. Let c_{1} and c_{2} be defined as in (3). Suppose that one of the conditions a), b), or c) of Theorem 3 holds. Suppose, in addition, that

$$
\left\{x \in C: c_{1}^{\top} x>0, c_{2}^{\top} x>0\right\}=\emptyset .
$$

Then

$$
\begin{aligned}
\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right) & =\{x \in C: x \text { satisfies (7) }\} \\
& =\{x \in C: x \text { satisfies (8) }\} .
\end{aligned}
$$

3.3 Two Examples

In this section we illustrate Theorem 3 with two examples.

3.3.1 A Two-Term Disjunction on a Paraboloid

Consider the disjunction $-2 x_{1}-x_{2}-2 x_{4} \geq 0 \vee x_{1} \geq 0$ on the paraboloid $C:=\left\{x \in \mathbb{L}^{4}\right.$: $\left.x_{1}+x_{4}=1\right\}$. Let $C_{1}:=\left\{x \in C:-2 x_{1}-x_{2}-2 x_{4} \geq 0\right\}$ and $C_{2}:=\left\{x \in C: x_{1} \geq 0\right\}$. Noting that C is a paraboloid and C_{1} and C_{2} are disjoint, we can use Corollary 3 to characterize $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ with a conic quadratic inequality:

$$
\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)=\left\{x \in C: 3 x+x_{1}(-3 ;-1 ; 0 ; 2) \in \mathbb{L}^{4}\right\} .
$$

Figure 1 depicts the paraboloid C in mesh and the disjunction $C_{1} \cup C_{2}$ in blue. The conic quadratic disjunctive cut added to convexify this set is shown in red.

Figure 1: The disjunctive cut obtained from a two-term disjunction on a paraboloid.

3.3.2 A Two-Term Disjunction on a Hyperboloid

Consider the disjunction $-2 x_{1}-x_{2} \geq 0 \vee \sqrt{2} x_{1}-x_{3} \geq 0$ on the hyperboloid $C:=\left\{x \in \mathbb{L}^{3}\right.$: $\left.x_{1}=2\right\}$. Let $C_{1}:=\left\{x \in C:-2 x_{1}-x_{2} \geq 0\right\}$ and $C_{2}:=\left\{x \in C: \sqrt{2} x_{1}-x_{3} \geq 0\right\}$. Note that, in this setting,

$$
a^{\top} r=\frac{1}{10}(1 ; 0 ; 0)^{\top}(-2 \sqrt{5}+5 \sqrt{2} ;-\sqrt{5} ;-5)<0
$$

but none of the conditions (13) are satisfied. The conic quadratic inequality

$$
\begin{equation*}
(5+2 \sqrt{10}) x+\left(\sqrt{2} x_{1}-x_{3}\right)(-2 \sqrt{5}+5 \sqrt{2} ;-\sqrt{5} ;-5) \in \mathbb{L}^{3} \tag{20}
\end{equation*}
$$

of Theorem 3 is valid for $C_{1} \cup C_{2}$ but not sufficient to describe its closed convex hull. Indeed, the inequality $x_{2} \leq 2$ is valid for $\overline{\operatorname{conv}}\left(C_{1} \cup C_{2}\right)$ but is not implied by 20 . Figure 2 depicts the hyperboloid C in mesh and the disjunction $C_{1} \cup C_{2}$ in blue. The conic quadratic disjunctive cut (20) is shown in red.

Acknowledgments

We would like to thank Fatma Kılıç-Karzan for the fruitful discussions that led to the results presented in this paper. This work was supported in part by NSF grant CMMI1263239 and ONR grant N00014-12-10032.

References

[1] K. Andersen and A. N. Jensen. Intersection cuts for mixed integer conic quadratic sets. In Proceedings of IPCO 2013, volume 7801 of Lecture Notes in Computer Science, pages 37-48, Valparaiso, Chile, March 2013.
[2] A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. Mathematical Programming, 122(1):1-20, 2010.

Figure 2: The disjunctive cut obtained from a two-term disjunction on a hyperboloid.
[3] E. Balas. Intersection cuts - a new type of cutting planes for integer programming. Operations Research, 19:19-39, 1971.
[4] P. Belotti, J. C. Goez, I. Polik, T. K. Ralphs, and T. Terlaky. A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. Technical report, Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, June 2012.
[5] P. Belotti, J.C. Góez, I. Pólik, T.K. Ralphs, and T. Terlaky. On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Applied Mathematics, 161(16):2778-2793, 2013.
[6] D. Bienstock and A. Michalka. Cutting-planes for optimization of convex functions over nonconvex sets. SIAM Journal on Optimization, 24(2):643-677, 2014.
[7] P. Bonami. Lift-and-project cuts for mixed integer convex programs. In O. Gunluk and G. J. Woeginger, editors, Proceedings of the 15th IPCO Conference, volume 6655 of Lecture Notes in Computer Science, pages 52-64, New York, NY, 2011. Springer.
[8] S. Burer and F. Kılıç-Karzan. How to convexify the intersection of a second-order cone with a non-convex quadratic. Working paper, June 2014.
[9] M. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Mathematical Programming, 104(1):179-202, 2005.
[10] D. Dadush, S. S. Dey, and J. P. Vielma. The split closure of a strictly convex body. Operations Research Letters, 39:121-126, 2011.
[11] S. Drewes. Mixed Integer Second Order Cone Programming. PhD thesis, Technische Universität Darmstadt, 2009.
[12] S. Drewes and S. Pokutta. Cutting-planes for weakly-coupled $0 / 1$ second order cone programs. Electronic Notes in Discrete Mathematics, 36:735-742, 2010.
[13] F. Kılıç-Karzan. On minimal valid inequalities for mixed integer conic programs. GSIA Working Paper Number: 2013-E20, GSIA, Carnegie Mellon University, Pittsburgh, PA, June 2013.
[14] F. Kılınç-Karzan and S. Yıldız. Two-term disjunctions on the second-order cone. Working paper, April 2014.
[15] S. Modaresi, M. R. Kılınç, and J. P. Vielma. Intersection cuts for nonlinear integer programming: Convexification techniques for structured sets. Working paper, March 2013.
[16] S. Modaresi, M. R. Kılınç, and J. P. Vielma. Split cuts and extended formulations for mixed integer conic quadratic programming. Working paper, February 2014.
[17] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, New Jersey, 1970.
[18] R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming, 86(3):515-532, 1999.

[^0]: *Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, syildiz@andrew.cmu.edu.
 ${ }^{\dagger}$ Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, gcOv@andrew.cmu. edu.

