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Abstract

We consider the problem of minimizing a convex function over a subset of
Rn that is not necessarily convex (minimization of a convex function over the
integer points in a polytope is a special case). We define a family of duals for this
problem and show that, under some natural conditions, strong duality holds for
a dual problem in this family that is more restrictive than previously considered
duals.

1 Introduction

Insights obtained through duality theory have spawned efficient optimization algorithms
(combinatorial and numerical) which simultaneously work on a pair of primal and dual
problems. Striking examples are Edmonds’ seminal work in combinatorial optimization,
and interior-point algorithms for numerical/continuous optimization.

Compared to duality theory for continuous optimization, duality theory for mixed-
integer optimization is still underdeveloped. Although the linear case has been ex-
tensively studied, see, e.g., [4, 5, 12, 13], nonlinear integer optimization duality was
essentially unexplored until recently. An important step was taken by Morán et al. for
conic mixed-integer problems [11], followed up by Baes et al. [2] who presented a duality
theory for general convex mixed-integer problems. The approach taken by Moran et al.
was essentially algebraic, drawing on the theory of subadditive functions. Baes et al.
took a more geometric viewpoint and developed a duality theory based on lattice-free
polyhedra. We follow the latter approach.

Given S ⊆ Rn and a convex function f : Rn → R, we consider the problem

inf
s∈S

f(s). (1)
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We describe a geometric dual object that can be used to certify optimality of a solution
to (1). For simplicity, let us consider the case when there exists an x0 ∈ Rn such that
f(x0) ≤ f(s) for all s ∈ S. We say that a closed set C is an S-free neighborhood of x0 if
x0 ∈ int(C) and int(C)∩ S = ∅. Using the convexity of f , it follows that for any s̄ ∈ S
and any C that is an S-free neighborhood of x0, the following holds:

f(s̄) ≥ inf
z∈bd(C)

f(z) =: L(C), (2)

where bd(C) denotes the boundary of C (to see this, consider the line segment con-
necting s̄ and x0 and a point at which this line segment intersects bd(C)). Thus, an
S-free neighborhood of x0 can be interpreted as a “dual object” that provides a lower
bound of the type (2). As a consequence, the following is true.

Proposition 1 (Weak duality). If there exist s̄ ∈ S and C ⊆ Rn that is an S-free
neighborhood of x0, such that equality holds in (2), then s̄ is an optimal solution to (1).

2 The dual problem

This motivates the definition of a dual optimization problem to (1). For any family F
of S-free neighborhoods of x0, define the F -dual of (1) as

sup
C∈F

L(C). (3)

Assuming very mild conditions on S and f (e.g., when S is a closed subset of Rn disjoint
from arg infx∈Rn f(x)), it is straightforward to show that if F is the family of all S-free
neighborhoods of x0, then strong duality holds, i.e., there exists s̄ ∈ S and C ∈ F
such that the condition in Proposition 1 holds. However, the entire family of S-free
neighborhoods is too unstructured to be useful as a dual problem. Moreover, the inner
optimization problem (2) of minimizing on the boundary of C can be very hard if C has
no structure other than being S-free. Thus, we would like to identify subfamilies F of
S-free neighborhoods that still maintain strong duality, while at the same time, are much
easier to work with inside a primal-dual framework. We list below three subclasses that
we expect to be useful in this line of research. First, we need the concept of a gradient
polyhedron:

Definition 2. Given a set of points z1, . . . , zk ∈ Rn,

Q := {x ∈ Rn : 〈ai, x− zi〉 ≤ 0, i = 1, . . . , k}

is said to be a gradient polyhedron of z1, . . . , zk if for every i = 1, . . . , k, ai ∈ ∂f(zi),
i.e., ai is a subgradient of f at zi.
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Remark 3. For every gradient polyhedron Q of points z1, . . . , zk we have L(C) =
infz∈bd(C) = mini∈[k] f(zi).

We consider the following families.

– The family Fmax of maximal convex S-free neighborhoods of x0, i.e., those S-free
neighborhoods that are convex, and are not strictly contained in a larger convex
S-free neighborhood.

– The family F∂ of convex S-free neighborhoods of x0 that are also gradient poly-
hedra for some finite set of points in Rn.

– The family F∂,S ⊆ F∂ of convex S-free neighborhoods of x0 that are also gradient
polyhedra for some finite set of points in S.

We propose the above families so as to leverage a recent surge of activity analyzing their
structure; the surveys [3] and Chapter 6 of [6] provide good overviews and references
for this whole line of work. This well-developed theory provides powerful mathematical
tools to work with these families. As an example, this prior work shows that for most
sets S that occur in practice (which includes the integer and mixed-integer cases), the
family Fmax only contains polyhedra. This is good from two perspectives:

– polyhedra are easier to represent and compute with than general S-free neighbor-
hoods,

– the inner optimization problem (2) of computing L(C) becomes the problem of
solving finitely many continuous convex optimization problems, corresponding to
the facets of C.

guarantees that the cost of these inner optimization problems will not be arbitrarily
high.

Of course, the first question to settle is whether these three families actually enjoy
strong duality, i.e., do we have strong duality between (1) and the Fmax-dual, F∂-dual
and F∂,S-dual? It turns out that the main result in [2] shows that for the mixed-integer
case, i.e., S = C ∩ (Zn1×Rn2) for some convex set C, the F∂-dual enjoys strong duality
under conditions of the Slater type from continuous optimization. It is not hard to
strengthen their result to also show that the Fmax ∩ F∂-dual is a strong dual, under
some additional assumptions.

In this paper, we give conditions on S and f such that strong duality holds for
the dual problem (3) associated with Fmax ∩ F∂,S. Below we give an explanation as
to why this family is very desirable. If these conditions on S and f are met, our
result is stronger than Baes et al. [2]. For example, when S is the set of integer points
in a compact convex set and f is any convex function, our certificate is a stronger
one. However, our conditions on S and f do not cover certain mixed-integer problems;
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whereas, the certificate from Baes et al. still exists in these settings. Nevertheless, it
can be shown that in such situations, a strong certificate like ours does not necessarily
exist.

3 Strong optimality certificates

Definition 4. A strong optimality certificate of size k for (1) is a set of points
z1, . . . , zk ∈ S together with subgradients ai ∈ ∂f(zi) such that

Q := {x ∈ Rn : 〈ai, x− zi〉 ≤ 0, i = 1, . . . , k} is S-free, (4)

〈ai, zj − zi〉 < 0 for all i 6= j. (5)

Remark 5. If a strong optimality certificate exists, then the infimum of f over S
is attained and we have mins∈S f(s) = mini∈[k] f(zi). In other words, given a strong
optimality certificate, we can compute (1) by simply evaluating f(z1), . . . , f(zk).

Indeed, recall that a ∈ ∂f(z) means that f(x) ≥ f(z)+〈a, x−z〉 holds for all x ∈ Rn.
Since Q is S-free, for every s ∈ S there is some i ∈ [k] such that 〈ai, s − zi〉 ≥ 0 and
hence f(s) ≥ f(zi).

In order to verify that z1, . . . , zk together with a1, . . . , ak form a strong optimality
certificate, one has to check whether the polyhedron Q is S-free. Deciding whether a
general polyhedron is S-free might be a difficult task. However, Property (5) ensures
that Q is maximal S-free, i.e., Q is not properly contained in any other S-free closed
convex set: Indeed, Property (5) implies that Q is a full-dimensional polyhedron and
that {x ∈ Q : 〈ai, x〉 = 0} is a facet of Q containing zi ∈ S in its relative interior for
every i ∈ [k]. Since every closed convex set C that properly contains Q contains the
relative interior of at least one facet of Q in its interior, C cannot be S-free.

For particular sets S, the properties of S-free sets that are maximal have been
extensively studied and are much better understood than general S-free sets. For
instance, if S = (Rd × Zn) ∩ C where C is a closed convex subset of Rn+d, maximal
S-free sets are polyhedra with at most 2n facets [10]. In particular, if S = Z2 the
characterizations in [8, 9] yield a very simple algorithm to detect whether a polyhedron
is maximal Z2-free.

In order to state our main result, we need the notion of the Helly number h(S) of the
set S, which is the largest number m such that there exist convex sets C1, . . . , Cm ⊆ Rn

satisfying ⋂
i∈[m]

Ci ∩ S = ∅ and
⋂

i∈[m]\{j}

Ci ∩ S 6= ∅ for every j ∈ [m]. (6)

Theorem 6. Let S ⊆ Rn and f : Rn → R be a convex function such that
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(i) O /∈ ∂f(s) for all s ∈ S,

(ii) h(S) is finite, and

(iii) for every polyhedron P ⊆ Rn with int(P ) ∩ S 6= ∅ there exists an s? ∈ int(P ) ∩ S
with f(s?) = infs∈int(P )∩S f(s).

Then there exists a strong optimality certificate of size at most h(S).

Let us comment on the assumptions in Theorem 6. First, if O ∈ ∂f(s?) for some
s? ∈ S, then s? is an optimal solution to (1) as well as s? ∈ arg infx∈Rn f(x). An easy
certificate of optimality in this case is the subgradient O.

Second, a quite general situation in which (ii) is always satisfied is the case S =
(Rd × Zn) ∩ C where C ⊆ Rd+n is a closed convex set. In this situation, one has
h(S) ≤ 2n(d + 1). The characterization of closed sets S for which h(S) is finite has
received a lot of attention, see, e.g., [1].

Third, note that (iii) implies that the minimum in (1) actually exists. As an example,
(iii) is fulfilled whenever S is discrete (every bounded subset of S is finite) and the set
{x ∈ Rn : f(x) ≤ α} is bounded and non-empty for some α ∈ R (implying that the set
is actually bounded for every α ∈ R). This latter condition is satisfied, e.g., when f is
strictly convex and has a minimizer. Another situation where (iii) is satisfied is when
S is a finite set, e.g., S = C ∩ Zn where C is a compact convex set.

Also, if conditions (i) and (ii) hold, but (iii) does not hold, a strong optimality
certificate may not exist. For example, consider S = {x ∈ Z2 :

√
2x1 − x2 ≥ 0, x1 ≥

1
2
, x2 ≥ 0} and f(x) =

√
2x1 − x2. In this case, no strong optimality certificate can

exist, as the infimum of f over S is 0, but it is not attained by any point in S.
Finally, we remark that Theorem 6 yields a situation in which the following strong

duality (see Proposition 1) holds.

Corollary 7 (Strong duality). If the conditions in Theorem 6 are met, then there exist
s̄ ∈ S , x0 ∈ Rn and C ⊆ Rn such that C is an S-free neighborhood of x0 and (2) holds
with equality.

Proof. Note that conditions (i) and (iii) imply that there exists an x0 ∈ Rn with f(x0) <
f(s) for all s ∈ S. By Theorem 6, there exists a strong optimality certificate defined by
points z1, . . . , zk ∈ S. Consider the S-free convex set Q defined in (4). The inequalities
in (5) imply that Q is an S-free neighborhood of x0. Furthermore, by Remarks 3 and 5
we also know that

L(Q) = inf
z∈bd(Q)

f(z) = min
i∈[k]

f(zi) = min
s∈S

f(s)

holds, which yields the claim.

Note that the above proof actually shows that x0 in Corollary 7 can be chosen as
any point that satisfies f(x0) < f(s) for all s ∈ S.
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4 Proof of Theorem 6

We make use of the following simple observation (see [7, Thm. 3] for a slightly stronger
statement). Let conv(·) denote the convex hull and vert(P ) denote the set of vertices
of a polyhedron P .

Lemma 8. Let S ⊆ Rn and V ⊆ S finite such that V = conv(V )∩S = vert(conv(V )).
Then we have |V | ≤ h(S).

Proof. Let V = {v1, . . . , vm} and for every i ∈ [m] let Ci := conv(V \ {vi}). Since
V = conv(V ) ∩ S = vert(conv(V )), we have Ci ∩ S = V \ {vi} for every i ∈ [m]. Thus,
C1, . . . , Cm satisfy (6) and hence m ≤ h(S).

We are ready to prove Theorem 6. Let us consider the following algorithm (in fact, we
will see that this is indeed a finite algorithm):

Q0 ← Rn, k ← 1

while int(Qk−1) ∩ S 6= ∅ :

tk ← min{f(s) : s ∈ int(Qk−1) ∩ S} (7)

Ck ← {x ∈ Rn : f(x) ≤ tk}
zk ← any s ∈ int(Qk−1) ∩ S with f(s) = tk such that dim(FCk

(s)) is largest possible
(8)

ak ← any point in relint(∂f(zk))

Qk ← {x ∈ Qk−1 : 〈ak, x− zk〉 ≤ 0}
k ← k + 1

In the above, relint(·) denotes the relative interior and dim(·) the affine dimension. For
a closed convex set C ⊆ Rn and a point p ∈ C we denote by FC(p) the smallest face of
C that contains p.

Remark that iteration k of the algorithm can always be executed, as the set Qk is
a polyhedron and hence by the assumption in (iii) the minimum in (7) always exists.
Furthermore, since ak ∈ relint(∂f(zk)) we have

Fk := FCk
(zk) = {x ∈ Ck : 〈ak, x− zk〉 = 0} (9)

Claim 1: For every k we have that 〈ai, zj − zi〉 < 0 holds for all i, j ≤ k with i 6= j.

Let k ≥ 2 and assume that the claim is satisfied for all i, j ≤ k − 1, i 6= j. Since
zk ∈ int(Qk−1) and ai 6= O by assumption (i), we have that 〈ai, zk − zi〉 < 0 for every
i < k.

It remains to show that 〈ak, zi− zk〉 < 0 for every i < k. Since ak ∈ ∂f(zk), we have
that 〈ak, zi− zk〉 ≤ f(zi)− f(zk) and for i < k by (7) we have f(zi) ≤ f(zk). Therefore
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〈ak, zi − zk〉 ≤ 0 and if 〈ak, zi − zk〉 = 0, then f(zi) = f(zk). Assume this is the case.
Since 〈ai, zk − zi〉 < 0 we have zk /∈ Fi and in particular

Fi 6= Fk. (10)

By (9) this means that zi ∈ Fk holds. Since Fi is the smallest face of Ci = Ck that
contains zi, this implies Fi ⊆ Fk. By (8), we have that dim(Fi) ≥ dim(Fk) and thus
Fi = Fk, a contradiction to (10).

Claim 2: For every k we have that V := {z1, . . . , zk} satisfies V = conv(V ) ∩ S =
vert(conv(V )).

It is easy to see that Claim 1 implies V = vert(conv(V )). For the sake of contradiction,
assume there exists some s ∈ (conv(V ) \ V ) ∩ S. By Claim 1, we have s ∈ int(Qk).
Therefore by (7) we have f(s) ≥ tk. Since f is convex and s ∈ conv(V ), this implies
f(s) = tk. Let a ∈ relint(∂f(s)) and consider F := FCk

(s) = {x ∈ Ck : 〈a, x− s〉 = 0}.
Since V ⊆ Ck, we have that zi ∈ F for at least one i ∈ [k]. Due to 〈a, zi − s〉 ≤
f(zi) − f(s) we must have f(zi) = tk and hence Fi ⊆ F . By (8), we further have
dim(Fi) ≥ dim(F ), which shows Fi = F . However, by Claim 1 we have zj /∈ Fi for all
j 6= i and hence s /∈ Fi, a contradiction since s ∈ F .

Claim 3: The algorithm stops after at most h(S) iterations and Q := Qk is S-free.

Note that the set V := {z1, . . . , zk} becomes larger in every iteration. By Claim 2 and
Lemma 8 we must have k ≤ h(S) and hence the algorithm stops after at most h(S)
iterations. Since the algorithm stops if and only if Qk is S-free, this proves the claim.
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