Mathematical Programming manuscript No.
(will be inserted by the editor)

Improved strategies for branching on general disjunctions

G. Cornugjols - L. Liberti - G. Nannicini

July 21, 2008

Abstract Within the context of solving Mixed-Integer Linear Prograifoy a Branch-and-
Cut algorithm, we propose a new strategy for branching. Ggatnal experiments show
that, on the majority of our test instances, this approacimemates fewer nodes than tradi-
tional branching. On average, the number of nodes in the eratian tree is reduced by a
factor two, while computing time is comparable. On a fewanses, the improvements are
of several orders of magnitude in both number of nodes anguating time.

Keywords integer programmingbranch and boundsplit disjunctions

1 Introduction

Mixed Integer Linear Programs (MILPSs) arise in several-géalapplications, and are usu-
ally solved via a Branch-and-Cut algorithm such as that @m@nted by Cplex [7], where
the node bound is obtained by solving a Linear Programmi®) (elaxation of the MILP.
Usually, branching occurs on the domain of integer vargbf®wever, this need not be
so: any disjunction of the feasible region of the relaxed loP excluding points that are
feasible in the original MILP can be used for branching. We tige termbranching on
general disjunctionso mean a branching strategy where the disjunctions are isyoirt
halfspaces of the formx < By, x > 1 with 3o < ;. Branching on general disjunction is
considered impractical because of the large computatieffiait needed to find a suitable
general disjunction. A recent paper [8] proposes branchimgieneral disjunctions aris-
ing from Mixed-Integer Gomory Cuts (MIGC). At each node & a choice of possible
MIGCs from which to derive the branching disjunction. Tharrhing strategy suggested
in [8] is based on the distance cut off by the corresponditergection cut as a quality mea-
sure for the choice of disjunction. The improvement in ofiyecfunction value that occurs

G. Corngjols

LIF, Faculte de Sciences de Luminy, Marseille, Fraacel

Tepper School of Businness, Carnegie Mellon Universitisiirgh, PA, USA
E-mail: gcOv@andrew. cmu. edu

L. Liberti, G. Nannicini
LIX, Ecole Polytechnique, 91128 Palaiseau, France
E-mail: {1iberti, giacomon}@lix.polytechnique.fr

after branching on a split disjunction is at least as largghasmprovement obtained after
adding the corresponding intersection cut. In this paperpropose a modification in the
class of disjunctions used for branching; instead of singpiynputing the disjunctions that
define MIGC at the optimal basis, we try to generate a new sdispfnctions in order to

increase the distance cut off by the corresponding intésecut. Moreover, we combine
branching on simple disjunctions and on general disjunstia an effective branching al-
gorithm, which shows an improvement over traditional brang rules on the majority of

test instances.

2 Preliminaries and notation

In this paper we consider the Mixed Integer Linear Prograstamdard form:

min cTx
Ax=Db
x>0 @

VieN xj € Z,

wherec € R", b€ R™, Ae R™™ andN, ¢ N = {1,...,n}. The LP relaxation of (1) is
the linear program obtained by dropping the integralitystaaints, and is denoted by’.
The Branch-and-Bound algorithm makes an implicit use oftcthrecept of disjunctions [3]:
whenever the solution of the current relaxation is fracipwe divide the current problem
& into two subproblems?; and &2, such that the union of the feasible regionsf
and Z, contains all feasible solutions t&’. Usually, this is done by choosing a fractional
componenk; (for somei € N;) of the optimal solutiorx fo the relaxationg?, and adding the
constraintsg < |X | andx > [X] to £ and 2, respectively.

Within this paper, we take the more general approach whdyednching can occur with
respect to a directiomr € R" by adding the constraintsx < fy, x > B; with By < 1 to
271 and &, respectively, as long as no integer feasible point is cut@ffen and Mehrotra
[9] generated branching directionswherert; € {—1,0,+1} Vj € N; and showed that using
such branching directions can decrease the size of the eatiometree significantly. Aardal
et al. [1] used basis reduction to find good branching dioestfor certain classes of difficult
integer programs. Karamanov and Ccgjals [8] proposed using the disjunctions defining
MIGCs at the current basis. Giv&iC N an optimal basis o7, andJ =N\ B, i.e.Jis the
set of nonbasic variables, the corresponding simplex aaliegiven by

X =X — a_”-xj Vi € B. (2)
2

Forj € J, letr} € R" be defined as

‘ —&; ifieB
=1 ifi=j 3)
0 otherwise

These vectors are the extreme rays of the doreR" | Ax=bAV]j € J (x; > 0)} with apex
x. Let D(1t, 1) define the split disjunctiom’x < 1V 11" X > 1+ 1, whererm € Z", 1p €

Z,m =0fori ¢ N, o = | 7" X]. By integrality of (17, 7p), any feasible solution o satis-
fies every split disjunction. Let(7t,) = 11" X— T be the violation by of the first term of

D(m,). Assume that the disjunctidB(,) is violated byx; i.e. 0< &(m,) < 1. The
intersection cut associated with a baBiand a split disjunctio®(1,) is

Xj

3 e 2t @

whereVj € J we define
~ &R jf mrl <0
a;j(1, 1) = ¢ L) g pTrd > 0 (5)
+oo otherwise

The Euclidean distance betweeand the cut defined above is (see [4]):

1

o(B,m,10) = (6)

) 1 ’
2§ G

3 Branching on general disjunctions: a quadratic optimization approach

We would like to generate good branching disjunctidrsr,). In [8] it is shown that the
gap closed by branching on a disjunctid(rm, 1p) is at least as large as the improvement in
the objective function obtained by the corresponding s&etion cut. Thus, it makes sense
to attempt to increase the value of the distad¢B, i1,) as much as possible. It is easy
to see that this means increasing the valuedfr,) Vj € J, which in turn corresponds
to decreasing the coefficient of the intersection cut (4)cffsidered intersection cuts (4)
obtained directly from the optimal tableau (2) as MIGCsifaBN N, such that & Z. The
split disjunctionD (7, né)) that defines the MIGC associated to a mwherex; is basic can
be computed as:

E]{ ifjeNNJ anda.j — EJJ gg— Lx.]
. aj| if j e N\nJanda;j — |&; | > X — X
171 ifi=]j)
0 otherwise
%= [(1)7X].
The corresponding (T, 1o) is
max(HE) i e ann
aj(m,mo) = ai-la] [a]-a) ©)
max(%tj)ij,%jﬁ) if j€J\N.

By conventionaj (T, 1p) is equal to+c when one of the denominators is zero in (8).

In this paper we study a method for increasingr, 7). By (6), this yields a disjunction
with a larger value ob (B, 11, 7p), which is thus likely to close a larger gap. To achieve this
goal, we modify the underlying disjunctidB(, 1), which has an influence on both the
numerators and the denominators of (8). It seems difficwptonizea; (11, 7o) for j € INN,
because both terms of the fraction are nonlinear. Thergfeeeoncentrate ope J\ N;.

Let Bl = BN N, Jc = J\ N;; apply a permutation to the simplex tableau in order to
obtainB = {1,...,|Bi|},d = {1,...,|J|}, and define the matri® € R <, d;; = &;.

Andersen, Corngjols and Li [2] proposed a reduction algorithm which cydle®ugh
the rowsd; of D and, for each one, considers whether summing an integeipheuf some
other row ofD yields a reduction ofidi||. The optimal integer multiplier can be computed
in closed form (see [2]). The denominatorsaf(rt,) Vj € J\ N, for the intersection cut
associated with a row of the simplex tableau are exactly ldments of the corresponding
row of D, thus a reduction gfd; || should yield an increase in tlog's. However, this method
only takes into account two rows at a time when computing fitev@l integer coefficient.

Our idea is to use, for each rogk of D, a subseR¢ C B, of the rows of the simplex
tableau withdy € Ry, in order to reducgldi|| as much as possible with a linear combination
with integer coefficients ofl andd; Vj € R\ {k}. This is done by defining, for each row
dy that we want to reduce, the convex minimization problem:

min | Y Afdjll, €)
AkeRRI Ak=1"j& 1

and then rounding the coefficien’t# to the nearest integetﬂﬂ. The purpose of imposing

)\i'(‘ = 1listo get different optimization problems foe=1,..., |B;|, thus increasing the chance
of obtaining different branching directions. With basigetraic calculations it can be shown
that this problem can be solved via #| x |Ry| linear system. We formalize our problem:
fork=1,...,|Bi| we solve the linear system

Ak)\ k_ bk7

whereAK € RIRI*IRd andb* € RIR are defined as follows:

1 ifi=j=k
A,K:{O if i =k or j = k but not both

J€ .
Z‘h:‘l dindjn otherwise (10)

K 1 ifi=k
bt = | '
— Yh1Gindkn otherwise
The form of the linear system guaranté¢gs= 1 in the solution.

Once these linear systems are solved and we have the optiefitientsi K € RIRd vk e
{1,...,[Bi[}, we round them to the nearest integer, and consider the nopifLa, L)\ﬂ d;.

If |3 jer, {)\ﬂ dj|| < |||, then we use the row g, {/\ﬂ a; instead of roway of the sim-

plex tableau in order to compute the split disjunction trefirees the associated MIGC, and
consider the possibly improved disjunction for branching.

Example 1Suppose we have the following matix

3182 3 2 3
1-2012-2-4-5
0-141 4 5-1
11110 0 2

and we apply the reduction algorithm to the first rdwFollowing (10), we obtain the linear
system:

D=

10 0Q [AM][1
0194-91| [AF]| | 4
0-9 602 [A}] |-52|°
01 28 [Af] [-20

5

whose solution i\® = (A}, A2,A2, A1) " = (1,-0.0042 —0.7906 —2.3018 . Rounding
each component to the nearest integer and compn‘gﬂﬁ@TD we obtain the row:

[102-1-1-30,

whosel, norm is 4, as opposed to the initial normdaf which is 10. Thus, we compute the
corresponding row of the simplex tableau with the same ageffisA®, and consider the
possibly improved disjunction for branching.

On the other hand, if we apply the reduction algorithm to #eoad row oD, we obtain
the linear system:

10005224 [AZ] [4
010 1] (A% |1
52 060 2| |AZ| | 9
20 0 2 8] [AZ] |1

)

whose solution a2 = (A2,A2,A2,A2) " = (~0.0627,1,0.205Q —0.0196) " . Rounding each
component to the nearest integer and compu[’ﬂnﬁﬂTD gives the original rowd,, hence
the reduction algorithm did not yield an improvement.

The choice of each s& C B, vk has an effect on the performance of the norm reduction
algorithm. Although usin@® = B, is possible, in that case two problems arise: first, the size
of the linear systems may become unmanageable in practideseond, if we add up too
many rows then the coefficients on the variables with indieebN N, may deteriorate.

In particular, we may get more nonzero coefficients. Thusdwéehe following. We fix a
maximum cardinalitWI‘Rk‘; if MR, > |Bi|, we setR¢ = B,. Otherwise, for each rok that
we want to reduce, we sort the remaining rows by ascendindeuof nonzero coefficients
on the variables with indices ifi € JNN|a&; = 0}, and select the firs¥l g, indices as
those inRk. The reason for this choice is that, although the value ottedficients on the
variables with indices JNN; is bounded, we would like those that are zero in o
be left unmodified when we compugg cg, {)\ﬂ aj. As zero coefficients on those variables

yield a stronger cut, we argue that this will yield a strongit disjunction as well.

4 Computational experiments

To assess the usefulness of our approach, we implementeith wie Cplex 11.0 Branch-
and-Bound framework the following branching methods:

— branching on single variables (Simple Disjunctions, SD),

— branching on split disjunctions after the reduction stegt the proposed in Section 3
(Improved General Disjunctions, IGD),

— branching on the split disjunctions that define the MIGCdatdurrent basis (General
Disjunctions, GD), in order to compare with the work of Kaamov and Corngjols [8],

— branching on split disjunctions after the application af fReduce-and-Split reduction
algorithm (Reduce-and-Split, RS), in order to compare wlib work of Andersen,
Cornigjols and Li [2],

— a combination of the SD and IGD method (Combined Generalubdjon, CGD),
which is described in Section 4.2.

In each set of experiments we applied only the methods tha meaningful for that partic-
ular experiment. We applied strong branching in order taekdhe best branching decision.
When not otherwise stated, the best branching decisiomsidered to be the one that gen-
erates the smallest number of feasible children, or, in #3® ©f a tie, the one that closes
more gap, computed as nfinf X%, ¢’ X2} wherext,x? are the optimal solutions of the LP
relaxations of the children nodes. If a branching decisienegates only one feasible child
at the current node, one side of the disjunction (i.e. thsilida one) can be considered as
a cutting plane; when several disjunctions of this kind asealered, we add all these cut-
ting planes. This leads to only one feasible child, but witkgibly a larger closed gap with
respect to the case where we add only one disjunction ashirenconstraint. Unless oth-
erwise stated, our testbed is the uniom@plib2.0, miplib3 andmiplib2003, after the
removal of all instances that can be solved to optimalityesslthan 10 nodes by the SD
algorithm, and the instances where one node cannot be processed thdas30 minutes
by the SD algorithr In total, the set consists in 96 heterogeneous instandesndde
selection strategy was set best boundand the value of the optimal solution was given
as a cutoff value for all those instances where the optimukndsvr®. These choices were
meant to reduce as much as possible the size of the enunmeratg and to minimize the ef-
fect of heuristics and of other uncontrollable factors [sas the time to find the first integer
solution) in order to get a more stable indication of the At performance on branching.

The rest of this section is divided as follows. In Section wel consider the different
branching algorithms separately, and compare them in alerespects. In Section 4.2 we
capitalize on the insight gained with the different expennts of the previous section, and
we combine the methods into a single branching algorithnichwve test in a Branch-and-
Cut framework. All averages reported in the following aremetric averages.

4.1 Comparison of the different methods

The first set of experiments involves branching at root nod@der to evaluate the amount
of integrality gap closed; we compute the relative closéegrality gap aﬁrﬁ%‘gg;%r those
instances where the optimal solution is known, while foeothstances we simply compare
the absolute closed gap. In this set of experiments we el possible branching de-
cisions via strong branching: that is, for SD we branchedlbinsetional integer variables,
for GD we branched on the split disjunctions computed froertws of the simplex tableau
where the associated basic variable is a fractional intesygable, and for IGD we branched
on all the split disjunctions obtained after the reductimpsescribed in Section 3 applied
to all rows of the simplex tableau where the associated basiable is a fractional integer
variable. For IGD, the maximum number of rows consideredachaeduction step was set
to 50 (i.e.Mg,| = 50VK). The experiments were made in a bare Branch-and-Bouridgett
that is, presolving, cutting planes and heuristics weralded. In these experiments, we
chose the branching decision that closed the largest ggardiess of the number of feasi-
ble children. In Table 1 we give a summary of the results far éxperiment. We report the
average relative integrality gap closed by each methodyteber of instances where each
method closes at least the same absolute gap as the otheretivods, and the number of
instances where the disjunction that closes the largesgagrates only one feasible child.

1 Theinstances are:ir01, air02, air03, air06, misc04, stein09.

2 The instances are: atlanta-ip, ds, momentuml, momentum2, momentum3, msc98-ip,
mzzvll, mzzv42z, netl2, rd-rplusc-21, stp3d.

3 See theniplib2003 web sitehttp://miplib.zib.de/miplib2003. php.

Average closed gap
(on instances with known optimum)
Simple disjunctions (SD): 4.27%
General disjunctions (GD): 6.71%
Improved general disjunctions (IGD): 6.56%

Number of instances with largest closed gap

Simple disjunctions (SD): 58
General disjunctions (GD): 64
Improved general disjunctions (IGD): 70

Number of instances with one child

Simple disjunctions (SD): 10
General disjunctions (GD): 29
Improved general disjunctions (IGD): 27

Table 1 Results after branching at root node

For the first criterion we only considered instances wheeedptimal solution is known,

so that we could compute the relative amount of integralédp glose; for the remaining
criteria, we also considered the instances with unknowimaph. We immediately observe
that branching on general disjunctions instead of singlekikes yields a significantly larger
amount of closed integrality gap. In our experiments, the i@&hod closes more gap on
average than the other two methods, and both GD and IGD gleatperform SD under

this criterion. Not only GD and IGD close more gap, but thesoahore frequently gener-
ate only one feasible child node; the number of children watgaken into account when
choosing the branching decision in this set of experimdnisit is interesting to note that
with GD and IGD we often have disjunctions that close a lamgewnt of gap and also do
not increase the size of the enumeration tree. Although er@thod closes slightly more
gap on average than IGD on the instances with known optimiiwre compare the number
of instances where each method closes at least the same taoigap as the other two

methods then IGD ranks first with 70 instances over 96 in total

For many reasons, applying strong branching on all posbitaleching decisions is im-
practical, as it requires a very large computational effdrich is not counterbalanced by
the reduction of the size of the enumeration tree. In the r@nexperiments we evaluated
the performance of the branching algorithms in a framewdrnkne strong branching is ap-
plied only to the most promising branching decisions. Thmber of branching decisions
evaluated with strong branching was set to 10. In the cas®pf@ picked the 10 integer
variables with the largest fractionary part (i.e. closef16). For GD and IGD, we picked
the 10 split disjunctions associated with the 10 MIGCs tleaEtthe largest cut off distance
(equation (6), see [8]), where for IGD the distance was cdetpafter the reduction step.

In the next two experiments, we solved up to 1000 nodes in itioeneration tree. We
reverted back to the original branching decision selectimthod that favours those dis-
junctions which generate a smaller number of feasible ohildHaving a smaller number
of children is a considerable advantage as we are able toge®durther in depth of the
enumeration tree, thus possibly leading to a larger closgd Bhe evaluation criterion was
the percentage of the integrality gap closed after 1000 syamteif the instance was solved
in less than 1000 nodes, the number of nodes required to &ntygtimality. For this set of

experiments, 7 instancewere excluded from the testbed, as solving 1000 nodes esjuir
more than 12 hours. To choose the number of riyg, that defines the size of the lin-
ear system at each iteration of the reduction step for the m@&fhod, we compared three
different values: 10, 20 and 50; we included in the comparibe Reduce-and-Split (RS)
coefficient improvement method introduced by AndersennGajols and Li [2], in order to
test whether their algorithm to generate good cutting davees also suitable for branching.
For fairness, we used for RS the same procedure as for the |&bodls: we picked the
10 split disjunctions associated with the 10 MIGCs that hidneelargest cut off distance
after the reduction step, and applied strong branching.dNewed the implementation of
the RS reduction algorithm given in the CGL library [6]. A somary of the results is given
in Table 2. It can be seen that IGD using 20 or 50 rows for thectdn step yields very

Number of solved instances

RS: 37
IGD with Mg,| = 10 (IGD10): 43
IGD with M| = 20 (IGD20): 42
IGD with M‘Rk‘ =50 (IGD50): 42

Average number of nodes
on instances solved by all methods

RS: 57.8
IGD with Mig,| = 10 (IGD10): 41.8
IGD with Mg, = 20 (IGD20): 44.0
IGD with Mig, = 50 (IGD50): 39.7

Average gap closed
on instances not solved by any method

RS: 12.80%
IGD with Mg = 10 (IGD10): 14.12%
IGD with Mg = 20 (IGD20): 15.06%
IGD with Mig, = 50 (IGD50): 14.85%

Number of instances with largest closed gap

RS: 53
IGD with Mig,| = 10 (IGD10): 63
IGD with Mg, = 20 (IGD20): 62
IGD with Mig, = 50 (IGD50): 66

Table 2 Results after 1000 solved nodes

similar results in terms of average closed gap on instaneesaived by any method, and
both choices close more gap than IGD With,| = 10 or RS on the unsolved instances.
The average number of nodes is smallerNbg, | = 50. In particular IGD outperforms RS
for branching. We give the following possible reason. Onéhefadvantages of RS for cut
generation is that the reduction algorithm generates aksplit disjunctions, trying to in-
crease the distance cut off by each one of the associatédgcptanes. As several cuts are
generated at each round, this approach is effective [2].d¥ew at each node of a Branch-
and-Bound tree only one disjunction is chosen for branghsmga method which tries to

4 The instances ar@ano3mip, fast0507, manna8l, mitre, protfold, sp97ar, t1717.

compute only one strong disjunction is more fruitful thar ¢hat generates a set of several
possibly weaker ones. This may explain why the reductioarélygn described in Section 3
seems to be more effective than RS for branching. We decaade IGD withMg, | = 50
in all following experiments. We did not test larger valuédte parameter, since solving
the linear system would take too much time in practice.

A summary of the comparison between SD, GD and IGD Mtg = 50 can be found
in Table 3. The increase in the gap per node that can be clgsédabching on general

Number of solved instances

Simple disjunctions (SD): 35
General disjunctions (GD): 42
Improved general disjunctions (IGD): 42

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 92.7
General disjunctions (GD): 52.9
Improved general disjunctions (IGD): 43.2

Average gap closed
on instances not solved by any method
Simple disjunctions (SD): 9.36%
General disjunctions (GD): 13.78%
Improved general disjunctions (IGD): 14.15%

Number of instances with largest closed gap

Simple disjunctions (SD): 55
General disjunctions (GD): 56
Improved general disjunctions (IGD): 63

Table 3 Results after 1000 solved nodes

disjunctions with respect to branching on single variakigdarge. This is confirmed by the
results in [8]. Besides, the IGD method seems to be on avergggrior in all respects to the
other two methods, as it closes more gap for the unsolvedrines under 1000 nodes, and
requires less nodes for the solved instances. This is alderguf we compare the number of
instances where each method closes at least the same algagds the other two methods:
IGD ranks first with 63 instances over the 89 instances in ésesét. However, there are
two instances where branching on simple disjunctions iserpoofitable than branching on
general disjunctions: theiro4 andair05 instances are solved by the SD method in 225
and 139 nodes respectively, while GD and IGD do not manageitve hem in 1000 nodes.
All other instances which are solved by SD are also solved Bya6d IGD.

4.2 Combination of several methods

Results in Table 3 suggest that IGD is indeed capable ofrgosiore gap per node on a
large number of instances; however, a more detailed asatyshe results shows that there
are a few instances where branching on general disjundsamnst profitable, and thus both
GD and IGD perform poorly. This may also happen, for exampleero gap instances,

10

Algorithm 1 CGD branching algorithm

Initialization: ActiveGDCounter— 3, FailedActivation— 0,NodeCounter— 0
while branchingdo
if root nodethen
NumGD+~— 20,NumSD~— 20
else
if ActiveGDCounter- 0then
NumGD«— 7,NumSD— 3
else
NumGD« 0,NumSD+ 10
end if
end if
generatNumGDgeneral disjunctions
generatNumSDsimple disjunctions
for all branching decisiondo
apply strong branching
end for
choose a disjunctioB(,)
if ActiveGDCounter> 0then
if D(11,) has support- 1 then
ActiveGDCounter— 10
FailedActivation— 0
else
ActiveGDCounter— ActiveGDCounter- 1
if ActiveGDCounter= Othen
FailedActivation— FailedActivation+ 1
end if
end if
else
NodeCounter— NodeCounte# 1
end if
if FailedActivation< 10N NodeCounter= 100then
ActiveGDCounter— 1
NodeCounter— 0
end if
end while

where the enumeration of nodes with SD is usually more é¥fecthus, we decided to
combine both the SD and the IGD method into a single branchiggrithm which tries
to decide, for each instance, if it is more effective to bfana simple disjunctions or on
general disjunctions. First we describe the ideas and thetipal considerations behind the
algorithm, and then we will describe how we implemented it.

The most evident drawback of branching on general disjanstis that it is slower
than using simple disjunctions. It is slower in several ezsg: the first reason is that the
computations at each node take longer. This is because veetbaompute the distance
cut off by the MIGC associated with each row of the simpleXdab, and the reduction
step that we propose involves the solution ofMfg,| x Mg, linear system for each row
which is improved, where we chodér | = 50. All these computations are carried out
several times, thus the overhead per node with respect tetireg on simple disjunctions
is significant. The second reason is that, by branching oergédisjunction, we add one
(or more) rows to the formulation of children nodes, whichymesult in a slowdown of
the LP solution process. On the other hand, branching onlsidigjunctions involves only
a change in the bounds of some variables, thus the size ofRh@oks not increase. This
suggests that branching on general disjunctions shouldée only if it is truly profitable,

11

which in turn requires a measure of profit. We decided to useathount of closed gap as
a measure of profit. Besides, since the computational oadrper node is significant when
considering general disjunctions for branching, we woikd to consider them only if it
brings an improvement in the solution time. Thus, if on a givestance general disjunctions
are never used because simple disjunctions are more ptefita® would like to disable
their computation as soon as possible in the enumeratienAethe polyhedron underlying
a problem may significantly change in different parts of ttenlshing tree, it may be a good
idea to test branching on general disjunctions periodiaalen if it has been disabled, in
order to verify whether it has become profitable.

We implemented a branching algorithm based on the abovédarations in the follow-
ing way: at each node, branching on general disjunctiondeaactive or not. If it is active,
we test 10 possible branching decisions with strong brawgchi general disjunctions, and 3
simple disjunctions. General disjunctions are picked dfrtlyey generate a smaller amount
of children nodes, or (in case of a tie) if the amount of cloged is at least 50% larger.
As a consequence, at all nodes where we do not manage to cpgajawe always prefer
simple disjunctions if they generate the same number ofidil as general disjunctions.
At the beginning of the enumeration tree, branching on gerdisjunctions is active for
the first 3 nodes; moreover, we put an increased effort atmodé, where we consider up
to 20 simple disjunctions and 20 general disjunctions. Vékena general disjunction is
chosen for branching, then branching on general disjunsti® activated for the following
10 nodes. Otherwise, when it is disactivated (because gfisidisjunctions being preferred
to general disjunctions for a given number of consecutivdespi.e. 3 at the beginning of
the enumeration tree, 10 otherwise), it is reactivatedregfier 100 nodes, but only for one
node, in order to test whether in that part of the enumeraties general disjunctions are
worthwhile. If a general disjunction is chosen, then bramglon general disjunctions is re-
activated for the following 10 nodes. After 10 consecutinéuitful activations, i.e. general
disjunctions are not chosen after being activated for 18ecoutive times, branching on gen-
eral disjunctions is permanently disabled. When perfognie reduction step described in
Section 3, in order to save time we do not consider all rowsdduction, but only the most
promising ones. We do this by looking at the MIGC associatét each row where the
basic integer variable is fractional, and sorting them &/ ¢brresponding distance cut off
(6). The 10 rows (20 at root node) with the largest distaneenavdified with the reduction
step of Section 3. Since only 7 have to be selected for stroagching, we recompute the
distances and pick the 7 largest ones. We give a descripitihis@lgorithm in Algorithm 1.

To assess the practical usefulness of this approach, weasenhghis branching algo-
rithm, which we will call Combined General Disjunctions (O with SD. In order to
evaluate the same number of branching decisions via stn@mgbing with both methods at
each node, we modified SD in order to consider, at root no@ehithinching decisions cor-
responding to the 40 integer variables with largest fractigoart, and then reverting back
to the usual 10 for the following nodes. We let Cplex 11.0 gpitting planes at root node
with the default parameters, and then branched for two hd\gain, preprocessing and
heuristics were disabled. In Table 4 we compare the numbsoleéd instances within the
two hours limit, the average closed gap on instances noéddly either method, the average
number of nodes and average CPU time on instances solvedthyrtathods. The results
clearly indicate that the CGD is able to combine the potépfithe IGD method to close
more gap with the rapidity of branching on simple disjunetiavhen general disjunctions
are not worth the additional required time. Not only CGD salall instances solved by SD,
but it solves 3 moretoteams in 273.46 seconds of CPU timgesa2_o in 2616.2 seconds,
androut in 2540.74 seconds. On the instances which have not beesdsioyveither of the

12

Number of solved instances
Simple disjunctions (SD): 67
Combined general disjunctions (CGD): 70

Average number of nodes
on instances solved by both methods
Simple disjunctions (SD): 195.1
Combined general disjunctions (CGD): 98.0

Average number of nodes
on instances not solved by either method
Simple disjunctions (SD): 35796.0
Combined general disjunctions (CGD): 15075.7

Average gap closed
on instances not solved by either method
Simple disjunctions (SD): 5.35%
Combined general disjunctions (CGD): 7.03%

Average CPU time [sec]
on instances solved by both methods
Simple disjunctions (SD): 3.03
Combined general disjunctions (CGD): 3.35

Table 4 Results in a Branch-and-Cut framework with a two hours timetlimi

two methods, the average integrality gap closed by CGD is [&tgér in relative terms than

the one closed by SD. This result is even more important ifevesler that CGD is slower:

in the 2 hours limit CGD solved only half as many nodes as SDwemage, thus the gap
closed per node is significantly larger for CGD. These awexadues only take into account
the instances with known optimum value.

We report a full table of results on the instance that havévaeh solved in less than two
hours by the SD method in Table 5. If we consider the 5 insafmewhich the optimal
solution value is not known, then on theu instance both methods close the same abso-
lute gap, onano3mip CGD closes more gap, and on the remaining 3 instangey 4r,
t1717, timtab2) SD closes more gap. However, on all 5 instances CGD solvewles
amount of nodes since it is slower, and the relative diffeeei.e. 2352920 1) in
closed gap on the 3 instances where SD closes more gap is emallmtab2, the differ-
ence is only (L3%, but CGD requires 4 times fewer nodes; @97ar the difference is
4.95% in favour of SD, but CGD requires 13 times fewer nodes.diffierence increases on
thet1717 instance: SD closes in relative terms92% more gap than CGD, solving twice
as many nodes in the two hours limit.

On a few instances, CGD performs strikingly better than Starkples are therkioo1
andopt1217 instances, which are difficult instancesmp1ib2003. Forarkioo1, branch-
ing with CGD closes 45% of the gap, whereas branching with 8Ip doses 683%. Sim-
ilarly, for opt1217 CGD closes 32%, versus 0% for SD. Therkioo1 instance was first
solved to optimality only recently by Balas and Saxena [idytinvest a large computational
effort in order to generate rank-1 split cuts that clos®B8% of the integrality gap, and then
use Cplex’s Branch-and-Bound algorithm to close the reimgigap (1695%) in 643425
nodes. We report that, if we run CGD ankio01 without time limits, 2827% of the inte-

13

SD ALGORITHM CGDALGORITHM GAP

CLOSEDGAP CLOSED GAP CLOSED

INSTANCE ABS. REL. NODES ABS. REL.| NODEs||By CuTs
10teams™ 0 0% 11775 2 28.5% 398 71.3%
alclsl 337.58 3.219 5340 371.423 3.54% 2578| 62.29%
aflow40Ob 36.854 22.79 20398 25.8243 15.9% 5477 57.3%
arkiO01 88.0556 6.83% 3612 580.27 45% 4000|| 28.27%
dano3mip 0.322586 1 8 0.374207 1 6 0%
danoint 0.310476 10.2% 5547 0.286139 9.44% 4790 2%
fast0507 0.262111 14.1% 587 0.0561795 3.03% 96 0%
gesa2_0* 84644.7 27.9% 195797 147352 48.5% 13181 51.4%
glass4 3293.85 0% 84369 3104.73 0% 79050 0%
harp2 199205 43.99 74255 215937 47.5% 12565 32.6%
liu 214 -| 108162 214 -| 100347 0%
marksharel 0 0%] 11027872 0 0%| 2540405 0%
markshare2 0 0%| 8606987 0 0%| 2431791 0%
mas74 859.296 65.2% 2405902 641.509 48.7% 800207 4.6%
mkc 2.92749 6.19 14486 6.52824 13.6% 8663 5.7%
noswot 0 0%| 3192040 0 0%] 1598812 0%
nsrand-ipx 158.293 6.82% 3932 222.726 9.6Y 1431|| 49.08%
opt1217 0 0%| 409010 1.33599 33.2% 316821 17%
protfold 2.32009 21.2% 140 2.14092 19.5% 150 3.6%
rol113000 127.615 7.12% 3083 293.192 16.4% 1406|| 40.68%
rout® 55.1337 57.6% 189312 94.9211 99.2% 28137 0.8%
setich 977.236 4.34% 120033 1355.82 6.02% 41034|| 86.06%
seymour 1.44368 7.54% 1251 1.09335 5.71% 688|| 41.66%
sp97ar 1.48955e+06 F 4231(| 1.41919e+06 F 318 0%
swath 28.3223 21.3% 20831 15.7973 11.9% 4724 34.9%
t1717 785.581 4 76 695.249 4 31 0%
timtabl 108754 14.8% 130014 103832 14.1% 35760 62.2%
timtab2 531157 4 50595 530454 {1 12461 0%
tr12-30 183.374 0.158% 17852 691.388 0.594% 6883|| 99.142%

Table 5 Results in a Branch-and-Cut framework on the instances wedah two hours by the SD method.
Instances with & have been solved by the CGD method.

grality gap is closed by Cplex’s cutting planes with defgaltameters, while the remaining
71.73% is closed by our branching algorithm in 925738 nodese Nwit Balas and Saxena
used the preprocessed problem as input, while in this papetways work with the original
instances (i.e. without preprocessint)teams, gesa2_o, harp2, rout andtr12-30 are five
other instances where CGD greatly outperforms SD. Amongeies that were solved by
both algorithms (see Table Ge113a required 15955 nodes using SD versus only 20 using
CGD, bel15 required 773432 nodes using SD versus 24 using CGD gassb required
38539 nodes using SD versus 140 using CGD. There is also aoveipent in computing
time by several orders of magnitude on these three instances

On those instances which are solved by both methods, CGDOresoqun average only
half the nodes needed by SD, and the average CPU time is ey fdr both methods (with
a slight advantage for SD). Full results are reported ind#ébl

Summarizing, in our experiments the combination betweea&DIGD, which we have
called CGD, seems clearly superior to the traditional binamg strategy that is represented
by branching on single variables. Moreover, as Cplex'satédl library is not optimized for
branching on general disjunctions, the implementation®@DCould be made faster.

14

GAP CLOSED SD ALGORITHM CGD ALGORITHM

By CuTs BY BRANCHING TIME TIME

INSTANCE ABs. REL. || NODES [SE] NODES [SE]
aflow30a 65.9% 59.6358 1813 77.886 1725 99.839
air04 17.9% 494.084 181 164.972 203 683.874
air05 15.1% 421.787 209 105.902 241 133.679
bell3a 70.8% 4638.26 15955 11.822 20 0.047
bell3b 89.6% 39855.3 1206 2.177 526 5.512
belld 91.93% 44957.8 9091 24177 3636 24.242
bellb 85.6% 51456.8 773432 | 553.703 24 0.128
blend2 23.2% 0.524858 539 5.321 454 9.920
bm23 24.8% 10.0974 119 0.272 78 0.364
cap6000 37.6% 113.47 289 30.176 236 111.553
dcmulti 68.5% 1323.83 41 1.050 56 2.853
dsbmip 100% 0 15 1.666 23 2.754
egout 35.7% 568.101 1 0.009 1 0.011
fiber 91.83% 20400.8 153 3.944 28 4.025
fixnet3 97.98% 227.43 5 0.300 5 0.421
fixnet4 87.7% 573.738 33 1.438 52 8.526
fixnet6 83.4% 461.791 1087 20.417 1365 52.859
flugpl 11.8% 30286.3 199 0.074 16 0.021
gen 100% 112313 0 0.021 0 0.026
gesa2 74.9% 76271.3 38539 | 1232.150 140 28.490
gesa3 69.3% 48425.7 51 2.149 63 4.016
gesa3_o 70.9% 45960.5 89 3.934 34 9.955
gt2 91.65% 643.634 236 0.412 43 0.139
khb05250 || 99.9336% 7317.49 0.06649 5 0.106 2 0.105
1152lav 30.1% 65.4949 552 15.614 149 16.251
1p4l 76% 5.875 3 0.059 3 0.160
lseu 68.1% 91.0289 61 0.181 46 0.349
manna81 100% 0 0 0.143 0 0.147
mas76 4.2% 1065.02 309659 | 651.702 || 377398 | 2608.890
miscO1 44.5% 281.057 251 3.836 274 7.151
misc02 56.6% 295.312 19 0.148 10 0.191
misc03 9.8% 1308.17 255 3.73 496 11.875
misc05 45.2% 29.3913 103 1.658 33 0.823
misc06 26.5% 6.83269 17 1.110 17 2.365
misc07 5.8% 1313.75 12139 | 462.649 25940 | 1536.48
mitre 100% 0 15 4.394 15 10.759
mod008 21.9% 12.5493 345 0.937 13 0.095
mod010 28% 11.5 25 0.567 2 0.440
mod011 68.2%)]| 2.40503e+06 707 | 2633.340 250 | 3539.000
mod013 30.1% 17.4348 115 0.317 107 0.422
modglob 73.7% 81583 1879 48.692 2387 75.699
nw04 9.1% 501.358 . 83 75.879 48 109.610
p0033 99.9159% 0.478261 0.08419 3 0.005 3 0.007
p0040 100% 62027 0 0.002 0 0.001
p0201 46% 400 69 1.147 50 1.635
p0282 96.99% 2458.44 3.019 23 0.218 12 0.261
p0291 48.5% 5223.75 51.59 0 0.017 0 0.018
p0548 99.9274% 6.08471 0.07269 9 0.076 6 0.157
p2756 98.49% 6.56956 7 0.364 13 1.205
pipex 63.5% 5.30334 19 0.041 12 0.050
pk1 0% 11 243317 | 956.355|| 189740 | 1468.170
pp08aCUTS 87.1% 240.666 711 12.363 658 18.583
pp08a 94.38% 258.537 392 4.633 372 4.481
qiu 0% 798.766 19399 | 2780.000 19399 | 2901.890
gnetl 71% 509.709 53 3.156 74 26.939
qneti_o 85.1% 585.272 17 1.267 13 3.826
rentacar 51% 759381 11 12.047 11 14.973
rgn 15.9% 28.0903 2089 2.143 1703 3.826
sample2 46.5% 68.4556 35 0.092 33 0.103
sentoy 24.9% 50.6089 . 52 0.175 53 0.266
setlal 99.9521% 2.2619 0.04799 5 0.056 6 0.145
setlcl 34.7% 6484.25 0 0.021 0 0.023
steinib 0% 2 42 0.058 44 0.068
stein27 0% 5 1628 3.785 1537 3.721
steindb 0% 8 29676 | 218.862 28882 | 215.015
vpmi 89.1% 0.5 17 0.092 17 0.107
vpm2 77% 0.888645 1299 15.646 477 5.723

Table 6 Results in a Branch-and-Cut framework on the instancesdbly®oth the SD and the CGD method.

15

References

. Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.Bmeltink, J.W.: Market split and basis reduction:

Towards a solution of the Corgjols-Dawande instances. INFORMS Journal on Comput{g), 192—
202 (2000). DOI http://dx.doi.org/10.1287/ijoc.12.32182635

. Andersen, K., Corrgjols, G., Li, Y.: Reduce-and-split cuts: Improving the peniance of mixed integer

Gomory cuts. Management SciergH11), 1720-1732 (2005)

. Balas, E.: Disjunctive programming. Annals of Discrete hahatics, 3-51 (1979)
. Balas, E., Ceria, S., Corgjols, G.: Mixed 0-1 programming by lift-and-project in a bcarand-cut frame-

work. Management Sciene(9), 1229-1246 (1996)

. Balas, E., Saxena, A.: Optimizing over the split closureatidmatical Programming132), 219-240

(2008)

. Coin-or cut generation library. URkttps://projects.coin-or.org/Cgl
. ILOG: ILOG CPLEX 11.0 User's Manual. ILOG S.A., Gentillyrance (2007)
. Karamanov, M., Corrgjols, G.: Branching on general disjunctions. Tech. reprn€gie Mellon Univer-

sity (2005). URLhttp://integer.tepper.cmu.edu

. Owen, J., Mehrotra, S.: Experimental results on using r@érdisjunctions in branch-and-bound for

general-integer linear program. Computational Optimizasiod Application20, 159-170 (2001)

