
Mathematical Programming manuscript No.
(will be inserted by the editor)

Improved strategies for branching on general disjunctions

G. Cornuéjols · L. Liberti · G. Nannicini

July 21, 2008

Abstract Within the context of solving Mixed-Integer Linear Programs by a Branch-and-
Cut algorithm, we propose a new strategy for branching. Computational experiments show
that, on the majority of our test instances, this approach enumerates fewer nodes than tradi-
tional branching. On average, the number of nodes in the enumeration tree is reduced by a
factor two, while computing time is comparable. On a few instances, the improvements are
of several orders of magnitude in both number of nodes and computing time.

Keywords integer programming· branch and bound· split disjunctions

1 Introduction

Mixed Integer Linear Programs (MILPs) arise in several real-life applications, and are usu-
ally solved via a Branch-and-Cut algorithm such as that implemented by Cplex [7], where
the node bound is obtained by solving a Linear Programming (LP) relaxation of the MILP.
Usually, branching occurs on the domain of integer variables; however, this need not be
so: any disjunction of the feasible region of the relaxed LP not excluding points that are
feasible in the original MILP can be used for branching. We use the termbranching on
general disjunctionsto mean a branching strategy where the disjunctions are two disjoint
halfspaces of the formπx≤ β0,πx≥ β1 with β0 < β1. Branching on general disjunction is
considered impractical because of the large computationaleffort needed to find a suitable
general disjunction. A recent paper [8] proposes branchingon general disjunctions aris-
ing from Mixed-Integer Gomory Cuts (MIGC). At each node there is a choice of possible
MIGCs from which to derive the branching disjunction. The branching strategy suggested
in [8] is based on the distance cut off by the corresponding intersection cut as a quality mea-
sure for the choice of disjunction. The improvement in objective function value that occurs

G. Cornúejols
LIF, Faculté de Sciences de Luminy, Marseille, Franceand
Tepper School of Businness, Carnegie Mellon University, Pittsburgh, PA, USA
E-mail:gc0v@andrew.cmu.edu

L. Liberti, G. Nannicini
LIX, École Polytechnique, 91128 Palaiseau, France
E-mail:{liberti,giacomon}@lix.polytechnique.fr

2

after branching on a split disjunction is at least as large asthe improvement obtained after
adding the corresponding intersection cut. In this paper, we propose a modification in the
class of disjunctions used for branching; instead of simplycomputing the disjunctions that
define MIGC at the optimal basis, we try to generate a new set ofdisjunctions in order to
increase the distance cut off by the corresponding intersection cut. Moreover, we combine
branching on simple disjunctions and on general disjunctions in an effective branching al-
gorithm, which shows an improvement over traditional branching rules on the majority of
test instances.

2 Preliminaries and notation

In this paper we consider the Mixed Integer Linear Program instandard form:

min c⊤x
Ax = b

x ≥ 0
∀ j ∈ NI x j ∈ Z,

P (1)

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n and NI ⊂ N = {1, . . . ,n}. The LP relaxation of (1) is

the linear program obtained by dropping the integrality constraints, and is denoted bȳP.
The Branch-and-Bound algorithm makes an implicit use of theconcept of disjunctions [3]:
whenever the solution of the current relaxation is fractional, we divide the current problem
P into two subproblemsP1 andP2 such that the union of the feasible regions ofP1

andP2 contains all feasible solutions toP. Usually, this is done by choosing a fractional
component ¯xi (for somei ∈NI) of the optimal solution ¯x to the relaxationP̄, and adding the
constraintsxi ≤ ⌊x̄i⌋ andxi ≥ ⌈x̄i⌉ to P1 andP2 respectively.

Within this paper, we take the more general approach wherebybranching can occur with
respect to a directionπ ∈ R

n by adding the constraintsπx≤ β0, πx≥ β1 with β0 < β1 to
P1 andP2 respectively, as long as no integer feasible point is cut off. Owen and Mehrotra
[9] generated branching directionsπ whereπ j ∈ {−1,0,+1} ∀ j ∈NI and showed that using
such branching directions can decrease the size of the enumeration tree significantly. Aardal
et al. [1] used basis reduction to find good branching directions for certain classes of difficult
integer programs. Karamanov and Cornuéjols [8] proposed using the disjunctions defining
MIGCs at the current basis. GivenB⊂N an optimal basis ofP̄, andJ = NrB, i.e.J is the
set of nonbasic variables, the corresponding simplex tableau is given by

xi = x̄i−∑
j∈J

āi j x j ∀i ∈ B. (2)

For j ∈ J, let r j ∈ R
n be defined as

r j
i =

−āi j if i ∈ B
1 if i = j
0 otherwise.

(3)

These vectors are the extreme rays of the cone{x∈R
n |Ax= b∧∀ j ∈ J (x j ≥ 0)} with apex

x̄. Let D(π,π0) define the split disjunctionπTx≤ π0∨πTx≥ π0 + 1, whereπ ∈ Z
n,π0 ∈

Z,π j = 0 for i /∈ NI ,π0 =
⌊

πT x̄
⌋

. By integrality of(π,π0), any feasible solution ofP satis-
fies every split disjunction. Letε(π,π0) = πT x̄−π0 be the violation by ¯x of the first term of

3

D(π,π0). Assume that the disjunctionD(π,π0) is violated by ¯x, i.e. 0< ε(π,π0) < 1. The
intersection cut associated with a basisB and a split disjunctionD(π,π0) is

∑
j∈J

x j

α j(π,π0)
≥ 1, (4)

where∀ j ∈ J we define

α j(π,π0) =

− ε(π,π0)
πT r j if πT r j < 0

1−ε(π,π0)
πT r j if πT r j > 0

+∞ otherwise.

(5)

The Euclidean distance between ¯x and the cut defined above is (see [4]):

δ (B,π,π0) =

√

1

∑ j∈J
1

α j (π,π0)2

. (6)

3 Branching on general disjunctions: a quadratic optimization approach

We would like to generate good branching disjunctionsD(π,π0). In [8] it is shown that the
gap closed by branching on a disjunctionD(π,π0) is at least as large as the improvement in
the objective function obtained by the corresponding intersection cut. Thus, it makes sense
to attempt to increase the value of the distanceδ (B,π,π0) as much as possible. It is easy
to see that this means increasing the value ofα j(π,π0) ∀ j ∈ J, which in turn corresponds
to decreasing the coefficient of the intersection cut (4). [8] considered intersection cuts (4)
obtained directly from the optimal tableau (2) as MIGCs fori ∈ B∩NI such that ¯xi 6∈ Z. The
split disjunctionD(π i ,π i

0) that defines the MIGC associated to a row ¯ai wherexi is basic can
be computed as:

π i
j =

⌊

āi j
⌋

if j ∈ NI ∩J andāi j −
⌊

āi j
⌋

≤ x̄i−⌊x̄i⌋
⌈

āi j
⌉

if j ∈ NI ∩J andāi j −
⌊

āi j
⌋

> x̄i−⌊x̄i⌋
1 if i = j
0 otherwise,

π i
0 =

⌊

(π i)T x̄
⌋

.

(7)

The correspondingα j(π,π0) is

α j(π,π0) =

max

(

x̄i−⌊x̄i⌋

āi j−⌊āi j ⌋
, ⌈x̄i⌉−x̄i

⌈āi j ⌉−āi j

)

if j ∈ J∩NI

max
(

x̄i−⌊x̄i⌋
āi j

, ⌈x̄i⌉−x̄i
−āi j

)

if j ∈ J\NI .
(8)

By convention,α j(π,π0) is equal to+∞ when one of the denominators is zero in (8).
In this paper we study a method for increasingα j(π,π0). By (6), this yields a disjunction

with a larger value ofδ (B,π,π0), which is thus likely to close a larger gap. To achieve this
goal, we modify the underlying disjunctionD(π,π0), which has an influence on both the
numerators and the denominators of (8). It seems difficult tooptimizeα j(π,π0) for j ∈ J∩NI

because both terms of the fraction are nonlinear. Therefore, we concentrate onj ∈ J\NI .
Let BI = B∩NI , JC = J \NI ; apply a permutation to the simplex tableau in order to

obtainBI = {1, . . . , |BI |},JC = {1, . . . , |JC|}, and define the matrixD ∈ R
|BI |×|JC|, di j = āi j .

4

Andersen, Cornúejols and Li [2] proposed a reduction algorithm which cyclesthrough
the rowsdi of D and, for each one, considers whether summing an integer multiple of some
other row ofD yields a reduction of‖di‖. The optimal integer multiplier can be computed
in closed form (see [2]). The denominators ofα j(π,π0)∀ j ∈ J\NI for the intersection cut
associated with a row of the simplex tableau are exactly the elements of the corresponding
row of D, thus a reduction of‖di‖ should yield an increase in theα j ’s. However, this method
only takes into account two rows at a time when computing the optimal integer coefficient.

Our idea is to use, for each rowdk of D, a subsetRk ⊂ BI of the rows of the simplex
tableau withdk ∈ Rk, in order to reduce‖dk‖ as much as possible with a linear combination
with integer coefficients ofdk andd j ∀ j ∈ Rk \ {k}. This is done by defining, for each row
dk that we want to reduce, the convex minimization problem:

min
λ k∈R

|Rk|,λ k
k =1
‖ ∑

j∈Rk

λ k
j d j‖, (9)

and then rounding the coefficientsλ k
j to the nearest integer

⌊

λ k
j

⌉

. The purpose of imposing

λ k
k = 1 is to get different optimization problems fork= 1, . . . , |BI |, thus increasing the chance

of obtaining different branching directions. With basic algebraic calculations it can be shown
that this problem can be solved via an|Rk|× |Rk| linear system. We formalize our problem:
for k = 1, . . . , |BI | we solve the linear system

Akλ k = bk,

whereAk ∈ R
|Rk|×|Rk| andbk ∈ R

|Rk| are defined as follows:

Ak
i j =

1 if i = j = k
0 if i = k or j = k but not both

∑|J
C|

h=1 dihd jh otherwise,

bk
i =

{

1 if i = k

−∑|J
C|

h=1 dihdkh otherwise.

(10)

The form of the linear system guaranteesλ k
k = 1 in the solution.

Once these linear systems are solved and we have the optimal coefficientsλ k∈R
|Rk| ∀k∈

{1, . . . , |BI |}, we round them to the nearest integer, and consider the norm of ∑ j∈Rk

⌊

λ k
j

⌉

d j .

If ‖∑ j∈Rk

⌊

λ k
j

⌉

d j‖< ‖dk‖, then we use the row∑ j∈Rk

⌊

λ k
j

⌉

ā j instead of row ¯ak of the sim-

plex tableau in order to compute the split disjunction that defines the associated MIGC, and
consider the possibly improved disjunction for branching.

Example 1Suppose we have the following matrixD:

D =

3 1 8 2 3 2 3
1 −2 0 12−2 −4 −5
0 −1 4 1 4 5 −1
1 1 1 1 0 0 2

and we apply the reduction algorithm to the first rowd1. Following (10), we obtain the linear
system:

1 0 0 0
0 194−9 1
0 −9 60 2
0 1 2 8

λ 1
1

λ 1
2

λ 1
3

λ 1
4

1
4
−52
−20

,

5

whose solution isλ 1 = (λ 1
1 ,λ 1

2 ,λ 1
3 ,λ 1

4)
⊤

= (1,−0.0042,−0.7906,−2.3018)⊤. Rounding

each component to the nearest integer and computing
⌊

λ 1
⌉⊤

D we obtain the row:

[

1 0 2−1 −1 −3 0
]

,

whoseL2 norm is 4, as opposed to the initial norm ofd1, which is 10. Thus, we compute the
corresponding row of the simplex tableau with the same coefficientsλ 1, and consider the
possibly improved disjunction for branching.

On the other hand, if we apply the reduction algorithm to the second row ofD, we obtain
the linear system:

100 0 52 20
0 1 0 1
52 0 60 2
20 0 2 8

λ 2
1

λ 2
2

λ 2
3

λ 2
4

4
1
9
−1

,

whose solution isλ 2 = (λ 2
1 ,λ 2

2 ,λ 2
3 ,λ 2

4)
⊤

= (−0.0627,1,0.2050,−0.0196)⊤. Rounding each

component to the nearest integer and computing
⌊

λ 2
⌉⊤

D gives the original rowd2, hence
the reduction algorithm did not yield an improvement.

The choice of each setRk⊂BI ∀k has an effect on the performance of the norm reduction
algorithm. Although usingRk = BI is possible, in that case two problems arise: first, the size
of the linear systems may become unmanageable in practice, and second, if we add up too
many rows then the coefficients on the variables with indices∈ J∩NI may deteriorate.
In particular, we may get more nonzero coefficients. Thus, wedo the following. We fix a
maximum cardinalityM|Rk|; if M|Rk| ≥ |BI |, we setRk = BI . Otherwise, for each rowk that
we want to reduce, we sort the remaining rows by ascending number of nonzero coefficients
on the variables with indices in{i ∈ J∩NI |āki = 0}, and select the firstM|Rk| indices as
those inRk. The reason for this choice is that, although the value of thecoefficients on the
variables with indices∈ J∩NI is bounded, we would like those that are zero in row ¯ak to

be left unmodified when we compute∑ j∈Rk

⌊

λ k
j

⌉

ā j . As zero coefficients on those variables

yield a stronger cut, we argue that this will yield a strongersplit disjunction as well.

4 Computational experiments

To assess the usefulness of our approach, we implemented within the Cplex 11.0 Branch-
and-Bound framework the following branching methods:

– branching on single variables (Simple Disjunctions, SD),
– branching on split disjunctions after the reduction step that we proposed in Section 3

(Improved General Disjunctions, IGD),
– branching on the split disjunctions that define the MIGCs at the current basis (General

Disjunctions, GD), in order to compare with the work of Karamanov and Cornúejols [8],
– branching on split disjunctions after the application of the Reduce-and-Split reduction

algorithm (Reduce-and-Split, RS), in order to compare withthe work of Andersen,
Cornúejols and Li [2],

– a combination of the SD and IGD method (Combined General Disjunction, CGD),
which is described in Section 4.2.

6

In each set of experiments we applied only the methods that were meaningful for that partic-
ular experiment. We applied strong branching in order to choose the best branching decision.
When not otherwise stated, the best branching decision is considered to be the one that gen-
erates the smallest number of feasible children, or, in the case of a tie, the one that closes
more gap, computed as min{c⊤x̄1,c⊤x̄2} wherex̄1, x̄2 are the optimal solutions of the LP
relaxations of the children nodes. If a branching decision generates only one feasible child
at the current node, one side of the disjunction (i.e. the feasible one) can be considered as
a cutting plane; when several disjunctions of this kind are discovered, we add all these cut-
ting planes. This leads to only one feasible child, but with possibly a larger closed gap with
respect to the case where we add only one disjunction as branching constraint. Unless oth-
erwise stated, our testbed is the union ofmiplib2.0, miplib3 andmiplib2003, after the
removal of all instances that can be solved to optimality in less than 10 nodes by the SD
algorithm1, and the instances where one node cannot be processed in lessthan 30 minutes
by the SD algorithm2. In total, the set consists in 96 heterogeneous instances. The node
selection strategy was set tobest bound, and the value of the optimal solution was given
as a cutoff value for all those instances where the optimum isknown3. These choices were
meant to reduce as much as possible the size of the enumeration tree, and to minimize the ef-
fect of heuristics and of other uncontrollable factors (such as the time to find the first integer
solution) in order to get a more stable indication of the algorithm performance on branching.

The rest of this section is divided as follows. In Section 4.1we consider the different
branching algorithms separately, and compare them in several respects. In Section 4.2 we
capitalize on the insight gained with the different experiments of the previous section, and
we combine the methods into a single branching algorithm, which we test in a Branch-and-
Cut framework. All averages reported in the following are geometric averages.

4.1 Comparison of the different methods

The first set of experiments involves branching at root node in order to evaluate the amount
of integrality gap closed; we compute the relative closed integrality gap asclosed gap

initial gap for those
instances where the optimal solution is known, while for other instances we simply compare
the absolute closed gap. In this set of experiments we evaluated all possible branching de-
cisions via strong branching: that is, for SD we branched on all fractional integer variables,
for GD we branched on the split disjunctions computed from the rows of the simplex tableau
where the associated basic variable is a fractional integervariable, and for IGD we branched
on all the split disjunctions obtained after the reduction step described in Section 3 applied
to all rows of the simplex tableau where the associated basicvariable is a fractional integer
variable. For IGD, the maximum number of rows considered in each reduction step was set
to 50 (i.e.M|Rk| = 50∀k). The experiments were made in a bare Branch-and-Bound setting;
that is, presolving, cutting planes and heuristics were disabled. In these experiments, we
chose the branching decision that closed the largest gap, regardless of the number of feasi-
ble children. In Table 1 we give a summary of the results for this experiment. We report the
average relative integrality gap closed by each method, thenumber of instances where each
method closes at least the same absolute gap as the other two methods, and the number of
instances where the disjunction that closes the largest gapgenerates only one feasible child.

1 The instances are:air01, air02, air03, air06, misc04, stein09.
2 The instances are: atlanta-ip, ds, momentum1, momentum2, momentum3, msc98-ip,

mzzv11, mzzv42z, net12, rd-rplusc-21, stp3d.
3 See themiplib2003 web site:http://miplib.zib.de/miplib2003.php.

7

Average closed gap
(on instances with known optimum)

Simple disjunctions (SD): 4.27%
General disjunctions (GD): 6.71%
Improved general disjunctions (IGD): 6.56%

Number of instances with largest closed gap

Simple disjunctions (SD): 58
General disjunctions (GD): 64
Improved general disjunctions (IGD): 70

Number of instances with one child

Simple disjunctions (SD): 10
General disjunctions (GD): 29
Improved general disjunctions (IGD): 27

Table 1 Results after branching at root node

For the first criterion we only considered instances where the optimal solution is known,
so that we could compute the relative amount of integrality gap close; for the remaining
criteria, we also considered the instances with unknown optimum. We immediately observe
that branching on general disjunctions instead of single variables yields a significantly larger
amount of closed integrality gap. In our experiments, the GDmethod closes more gap on
average than the other two methods, and both GD and IGD clearly outperform SD under
this criterion. Not only GD and IGD close more gap, but they also more frequently gener-
ate only one feasible child node; the number of children was not taken into account when
choosing the branching decision in this set of experiments,but it is interesting to note that
with GD and IGD we often have disjunctions that close a large amount of gap and also do
not increase the size of the enumeration tree. Although the GD method closes slightly more
gap on average than IGD on the instances with known optimum, if we compare the number
of instances where each method closes at least the same amount of gap as the other two
methods then IGD ranks first with 70 instances over 96 in total.

For many reasons, applying strong branching on all possiblebranching decisions is im-
practical, as it requires a very large computational effortwhich is not counterbalanced by
the reduction of the size of the enumeration tree. In the remaining experiments we evaluated
the performance of the branching algorithms in a framework where strong branching is ap-
plied only to the most promising branching decisions. The number of branching decisions
evaluated with strong branching was set to 10. In the case of SD, we picked the 10 integer
variables with the largest fractionary part (i.e. closer to0.5). For GD and IGD, we picked
the 10 split disjunctions associated with the 10 MIGCs that have the largest cut off distance
(equation (6), see [8]), where for IGD the distance was computed after the reduction step.

In the next two experiments, we solved up to 1000 nodes in the enumeration tree. We
reverted back to the original branching decision selectionmethod that favours those dis-
junctions which generate a smaller number of feasible children. Having a smaller number
of children is a considerable advantage as we are able to progress further in depth of the
enumeration tree, thus possibly leading to a larger closed gap. The evaluation criterion was
the percentage of the integrality gap closed after 1000 nodes, or, if the instance was solved
in less than 1000 nodes, the number of nodes required to solveto optimality. For this set of

8

experiments, 7 instances4 were excluded from the testbed, as solving 1000 nodes required
more than 12 hours. To choose the number of rowsM|Rk| that defines the size of the lin-
ear system at each iteration of the reduction step for the IGDmethod, we compared three
different values: 10, 20 and 50; we included in the comparison the Reduce-and-Split (RS)
coefficient improvement method introduced by Andersen, Cornuéjols and Li [2], in order to
test whether their algorithm to generate good cutting planes was also suitable for branching.
For fairness, we used for RS the same procedure as for the IGD methods: we picked the
10 split disjunctions associated with the 10 MIGCs that havethe largest cut off distance
after the reduction step, and applied strong branching. We followed the implementation of
the RS reduction algorithm given in the CGL library [6]. A summary of the results is given
in Table 2. It can be seen that IGD using 20 or 50 rows for the reduction step yields very

Number of solved instances

RS: 37
IGD with M|Rk|

= 10 (IGD10): 43
IGD with M|Rk|

= 20 (IGD20): 42
IGD with M|Rk|

= 50 (IGD50): 42

Average number of nodes
on instances solved by all methods

RS: 57.8
IGD with M|Rk|

= 10 (IGD10): 41.8
IGD with M|Rk|

= 20 (IGD20): 44.0
IGD with M|Rk|

= 50 (IGD50): 39.7

Average gap closed
on instances not solved by any method

RS: 12.80%
IGD with M|Rk|

= 10 (IGD10): 14.12%
IGD with M|Rk|

= 20 (IGD20): 15.06%
IGD with M|Rk|

= 50 (IGD50): 14.85%

Number of instances with largest closed gap

RS: 53
IGD with M|Rk|

= 10 (IGD10): 63
IGD with M|Rk|

= 20 (IGD20): 62
IGD with M|Rk|

= 50 (IGD50): 66

Table 2 Results after 1000 solved nodes

similar results in terms of average closed gap on instances not solved by any method, and
both choices close more gap than IGD withM|Rk| = 10 or RS on the unsolved instances.
The average number of nodes is smaller forM|Rk| = 50. In particular IGD outperforms RS
for branching. We give the following possible reason. One ofthe advantages of RS for cut
generation is that the reduction algorithm generates several split disjunctions, trying to in-
crease the distance cut off by each one of the associated cutting planes. As several cuts are
generated at each round, this approach is effective [2]. However, at each node of a Branch-
and-Bound tree only one disjunction is chosen for branching, so a method which tries to

4 The instances are:dano3mip, fast0507, manna81, mitre, protfold, sp97ar, t1717.

9

compute only one strong disjunction is more fruitful than one that generates a set of several
possibly weaker ones. This may explain why the reduction algorithm described in Section 3
seems to be more effective than RS for branching. We decided to use IGD withM|Rk| = 50
in all following experiments. We did not test larger values of the parameter, since solving
the linear system would take too much time in practice.

A summary of the comparison between SD, GD and IGD withM|Rk| = 50 can be found
in Table 3. The increase in the gap per node that can be closed by branching on general

Number of solved instances

Simple disjunctions (SD): 35
General disjunctions (GD): 42
Improved general disjunctions (IGD): 42

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 92.7
General disjunctions (GD): 52.9
Improved general disjunctions (IGD): 43.2

Average gap closed
on instances not solved by any method

Simple disjunctions (SD): 9.36%
General disjunctions (GD): 13.78%
Improved general disjunctions (IGD): 14.15%

Number of instances with largest closed gap

Simple disjunctions (SD): 55
General disjunctions (GD): 56
Improved general disjunctions (IGD): 63

Table 3 Results after 1000 solved nodes

disjunctions with respect to branching on single variablesis large. This is confirmed by the
results in [8]. Besides, the IGD method seems to be on averagesuperior in all respects to the
other two methods, as it closes more gap for the unsolved instances under 1000 nodes, and
requires less nodes for the solved instances. This is also evident if we compare the number of
instances where each method closes at least the same absolute gap as the other two methods:
IGD ranks first with 63 instances over the 89 instances in the testset. However, there are
two instances where branching on simple disjunctions is more profitable than branching on
general disjunctions: theair04 andair05 instances are solved by the SD method in 225
and 139 nodes respectively, while GD and IGD do not manage to solve them in 1000 nodes.
All other instances which are solved by SD are also solved by GD and IGD.

4.2 Combination of several methods

Results in Table 3 suggest that IGD is indeed capable of closing more gap per node on a
large number of instances; however, a more detailed analysis of the results shows that there
are a few instances where branching on general disjunctionsis not profitable, and thus both
GD and IGD perform poorly. This may also happen, for example,in zero gap instances,

10

Algorithm 1 CGD branching algorithm
Initialization:ActiveGDCounter← 3,FailedActivation← 0,NodeCounter← 0
while branchingdo

if root nodethen
NumGD← 20,NumSD← 20

else
if ActiveGDCounter> 0 then

NumGD← 7,NumSD← 3
else

NumGD← 0,NumSD← 10
end if

end if
generateNumGDgeneral disjunctions
generateNumSDsimple disjunctions
for all branching decisionsdo

apply strong branching
end for
choose a disjunctionD(π,π0)
if ActiveGDCounter> 0 then

if D(π,π0) has support> 1 then
ActiveGDCounter← 10
FailedActivation← 0

else
ActiveGDCounter← ActiveGDCounter−1
if ActiveGDCounter= 0 then

FailedActivation← FailedActivation+1
end if

end if
else

NodeCounter← NodeCounter+1
end if
if FailedActivation< 10∧NodeCounter= 100then

ActiveGDCounter← 1
NodeCounter← 0

end if
end while

where the enumeration of nodes with SD is usually more effective. Thus, we decided to
combine both the SD and the IGD method into a single branchingalgorithm which tries
to decide, for each instance, if it is more effective to branch on simple disjunctions or on
general disjunctions. First we describe the ideas and the practical considerations behind the
algorithm, and then we will describe how we implemented it.

The most evident drawback of branching on general disjunctions is that it is slower
than using simple disjunctions. It is slower in several respects: the first reason is that the
computations at each node take longer. This is because we have to compute the distance
cut off by the MIGC associated with each row of the simplex tableau, and the reduction
step that we propose involves the solution of anM|Rk|×M|Rk| linear system for each row
which is improved, where we choseM|Rk| = 50. All these computations are carried out
several times, thus the overhead per node with respect to branching on simple disjunctions
is significant. The second reason is that, by branching on general disjunction, we add one
(or more) rows to the formulation of children nodes, which may result in a slowdown of
the LP solution process. On the other hand, branching on simple disjunctions involves only
a change in the bounds of some variables, thus the size of the LP does not increase. This
suggests that branching on general disjunctions should be used only if it is truly profitable,

11

which in turn requires a measure of profit. We decided to use the amount of closed gap as
a measure of profit. Besides, since the computational overhead per node is significant when
considering general disjunctions for branching, we would like to consider them only if it
brings an improvement in the solution time. Thus, if on a given instance general disjunctions
are never used because simple disjunctions are more profitable, we would like to disable
their computation as soon as possible in the enumeration tree. As the polyhedron underlying
a problem may significantly change in different parts of the branching tree, it may be a good
idea to test branching on general disjunctions periodically even if it has been disabled, in
order to verify whether it has become profitable.

We implemented a branching algorithm based on the above considerations in the follow-
ing way: at each node, branching on general disjunctions canbe active or not. If it is active,
we test 10 possible branching decisions with strong branching: 7 general disjunctions, and 3
simple disjunctions. General disjunctions are picked onlyif they generate a smaller amount
of children nodes, or (in case of a tie) if the amount of closedgap is at least 50% larger.
As a consequence, at all nodes where we do not manage to close any gap we always prefer
simple disjunctions if they generate the same number of children as general disjunctions.
At the beginning of the enumeration tree, branching on general disjunctions is active for
the first 3 nodes; moreover, we put an increased effort at rootnode, where we consider up
to 20 simple disjunctions and 20 general disjunctions. Whenever a general disjunction is
chosen for branching, then branching on general disjunctions is activated for the following
10 nodes. Otherwise, when it is disactivated (because of simple disjunctions being preferred
to general disjunctions for a given number of consecutive nodes, i.e. 3 at the beginning of
the enumeration tree, 10 otherwise), it is reactivated again after 100 nodes, but only for one
node, in order to test whether in that part of the enumerationtree general disjunctions are
worthwhile. If a general disjunction is chosen, then branching on general disjunctions is re-
activated for the following 10 nodes. After 10 consecutive unfruitful activations, i.e. general
disjunctions are not chosen after being activated for 10 consecutive times, branching on gen-
eral disjunctions is permanently disabled. When performing the reduction step described in
Section 3, in order to save time we do not consider all rows forreduction, but only the most
promising ones. We do this by looking at the MIGC associated with each row where the
basic integer variable is fractional, and sorting them by the corresponding distance cut off
(6). The 10 rows (20 at root node) with the largest distance are modified with the reduction
step of Section 3. Since only 7 have to be selected for strong branching, we recompute the
distances and pick the 7 largest ones. We give a description of this algorithm in Algorithm 1.

To assess the practical usefulness of this approach, we compared this branching algo-
rithm, which we will call Combined General Disjunctions (CGD), with SD. In order to
evaluate the same number of branching decisions via strong branching with both methods at
each node, we modified SD in order to consider, at root node, the branching decisions cor-
responding to the 40 integer variables with largest fractional part, and then reverting back
to the usual 10 for the following nodes. We let Cplex 11.0 apply cutting planes at root node
with the default parameters, and then branched for two hours. Again, preprocessing and
heuristics were disabled. In Table 4 we compare the number ofsolved instances within the
two hours limit, the average closed gap on instances not solved by either method, the average
number of nodes and average CPU time on instances solved by both methods. The results
clearly indicate that the CGD is able to combine the potential of the IGD method to close
more gap with the rapidity of branching on simple disjunctions when general disjunctions
are not worth the additional required time. Not only CGD solves all instances solved by SD,
but it solves 3 more:10teams in 273.46 seconds of CPU time,gesa2 o in 2616.2 seconds,
androut in 2540.74 seconds. On the instances which have not been solved by either of the

12

Number of solved instances

Simple disjunctions (SD): 67
Combined general disjunctions (CGD): 70

Average number of nodes
on instances solved by both methods

Simple disjunctions (SD): 195.1
Combined general disjunctions (CGD): 98.0

Average number of nodes
on instances not solved by either method

Simple disjunctions (SD): 35796.0
Combined general disjunctions (CGD): 15075.7

Average gap closed
on instances not solved by either method

Simple disjunctions (SD): 5.35%
Combined general disjunctions (CGD): 7.03%

Average CPU time [sec]
on instances solved by both methods

Simple disjunctions (SD): 3.03
Combined general disjunctions (CGD): 3.35

Table 4 Results in a Branch-and-Cut framework with a two hours time limit

two methods, the average integrality gap closed by CGD is 31%larger in relative terms than
the one closed by SD. This result is even more important if we consider that CGD is slower:
in the 2 hours limit CGD solved only half as many nodes as SD on average, thus the gap
closed per node is significantly larger for CGD. These average values only take into account
the instances with known optimum value.

We report a full table of results on the instance that have notbeen solved in less than two
hours by the SD method in Table 5. If we consider the 5 instances for which the optimal
solution value is not known, then on theliu instance both methods close the same abso-
lute gap, ondano3mip CGD closes more gap, and on the remaining 3 instances (sp97ar,

t1717, timtab2) SD closes more gap. However, on all 5 instances CGD solves a smaller
amount of nodes since it is slower, and the relative difference (i.e. absolute gap SD

absolute gap CGD− 1) in
closed gap on the 3 instances where SD closes more gap is small: on timtab2, the differ-
ence is only 0.13%, but CGD requires 4 times fewer nodes; onsp97ar the difference is
4.95% in favour of SD, but CGD requires 13 times fewer nodes. Thedifference increases on
thet1717 instance: SD closes in relative terms 12.99% more gap than CGD, solving twice
as many nodes in the two hours limit.

On a few instances, CGD performs strikingly better than SD. Examples are thearki001
andopt1217 instances, which are difficult instances ofmiplib2003. Forarki001, branch-
ing with CGD closes 45% of the gap, whereas branching with SD only closes 6.83%. Sim-
ilarly, for opt1217 CGD closes 33.2%, versus 0% for SD. Thearki001 instance was first
solved to optimality only recently by Balas and Saxena [5]: they invest a large computational
effort in order to generate rank-1 split cuts that close 83.05% of the integrality gap, and then
use Cplex’s Branch-and-Bound algorithm to close the remaining gap (16.95%) in 643425
nodes. We report that, if we run CGD onarki001 without time limits, 28.27% of the inte-

13

SD ALGORITHM CGD ALGORITHM GAP

CLOSED GAP CLOSED GAP CLOSED

INSTANCE ABS. REL. NODES ABS. REL. NODES BY CUTS

10teams∗ 0 0% 11775 2 28.5% 398 71.3%
a1c1s1 337.58 3.21% 5340 371.423 3.54% 2578 62.29%
aflow40b 36.854 22.7% 20398 25.8243 15.9% 5477 57.3%
arki001 88.0556 6.83% 3612 580.27 45% 4000 28.27%
dano3mip 0.322586 - 8 0.374207 - 6 0%
danoint 0.310476 10.2% 5547 0.286139 9.44% 4790 2%
fast0507 0.262111 14.1% 587 0.0561795 3.03% 96 0%
gesa2 o∗ 84644.7 27.9% 195797 147352 48.5% 13181 51.4%
glass4 3293.85 0% 84369 3104.73 0% 79050 0%
harp2 199205 43.9% 74255 215937 47.5% 12565 32.6%
liu 214 - 108162 214 - 100347 0%
markshare1 0 0% 11027872 0 0% 2540405 0%
markshare2 0 0% 8606987 0 0% 2431791 0%
mas74 859.296 65.2% 2405902 641.509 48.7% 800207 4.6%
mkc 2.92749 6.1% 14486 6.52824 13.6% 8663 5.7%
noswot 0 0% 3192040 0 0% 1598812 0%
nsrand-ipx 158.293 6.82% 3932 222.726 9.6% 1431 49.08%
opt1217 0 0% 409010 1.33599 33.2% 316821 17%
protfold 2.32009 21.2% 140 2.14092 19.5% 150 3.6%
roll3000 127.615 7.12% 3083 293.192 16.4% 1406 40.68%
rout∗ 55.1337 57.6% 189312 94.9211 99.2% 28137 0.8%
set1ch 977.236 4.34% 120033 1355.82 6.02% 41034 86.06%
seymour 1.44368 7.54% 1251 1.09335 5.71% 688 41.66%
sp97ar 1.48955e+06 - 4231 1.41919e+06 - 318 0%
swath 28.3223 21.3% 20831 15.7973 11.9% 4724 34.9%
t1717 785.581 - 76 695.249 - 31 0%
timtab1 108754 14.8% 130014 103832 14.1% 35760 62.2%
timtab2 531157 - 50595 530454 - 12461 0%
tr12-30 183.374 0.158% 17852 691.388 0.594% 6883 99.142%

Table 5 Results in a Branch-and-Cut framework on the instances unsolved in two hours by the SD method.
Instances with a∗ have been solved by the CGD method.

grality gap is closed by Cplex’s cutting planes with defaultparameters, while the remaining
71.73% is closed by our branching algorithm in 925738 nodes. Note that Balas and Saxena
used the preprocessed problem as input, while in this paper we always work with the original
instances (i.e. without preprocessing).10teams, gesa2 o, harp2, rout andtr12-30 are five
other instances where CGD greatly outperforms SD. Among examples that were solved by
both algorithms (see Table 6),bell3a required 15955 nodes using SD versus only 20 using
CGD, bell5 required 773432 nodes using SD versus 24 using CGD, andgesa2 required
38539 nodes using SD versus 140 using CGD. There is also an improvement in computing
time by several orders of magnitude on these three instances.

On those instances which are solved by both methods, CGD requires on average only
half the nodes needed by SD, and the average CPU time is very close for both methods (with
a slight advantage for SD). Full results are reported in Table 6.

Summarizing, in our experiments the combination between SDand IGD, which we have
called CGD, seems clearly superior to the traditional branching strategy that is represented
by branching on single variables. Moreover, as Cplex’s callable library is not optimized for
branching on general disjunctions, the implementation of CGD could be made faster.

14

GAP CLOSED SD ALGORITHM CGD ALGORITHM

BY CUTS BY BRANCHING TIME TIME

INSTANCE ABS. REL. NODES [SEC] NODES [SEC]
aflow30a 65.9% 59.6358 34.1% 1813 77.886 1725 99.839
air04 17.9% 494.084 82.1% 181 164.972 203 683.874
air05 15.1% 421.787 84.9% 209 105.902 241 133.679
bell3a 70.8% 4638.26 29.2% 15955 11.822 20 0.047
bell3b 89.6% 39855.3 10.4% 1206 2.177 526 5.512
bell4 91.93% 44957.8 8.07% 9091 24.177 3636 24.242
bell5 85.6% 51456.8 14.4% 773432 553.703 24 0.128
blend2 23.2% 0.524858 76.8% 539 5.321 454 9.920
bm23 24.8% 10.0974 75.2% 119 0.272 78 0.364
cap6000 37.6% 113.47 62.4% 289 30.176 236 111.553
dcmulti 68.5% 1323.83 31.5% 41 1.050 56 2.853
dsbmip 100% 0 0% 15 1.666 23 2.754
egout 35.7% 568.101 64.3% 1 0.009 1 0.011
fiber 91.83% 20400.8 8.17% 153 3.944 28 4.025
fixnet3 97.98% 227.43 2.02% 5 0.300 5 0.421
fixnet4 87.7% 573.738 12.3% 33 1.438 52 8.526
fixnet6 83.4% 461.791 16.6% 1087 20.417 1365 52.859
flugpl 11.8% 30286.3 88.2% 199 0.074 16 0.021
gen 100% 112313 0% 0 0.021 0 0.026
gesa2 74.9% 76271.3 25.1% 38539 1232.150 140 28.490
gesa3 69.3% 48425.7 30.7% 51 2.149 63 4.016
gesa3 o 70.9% 45960.5 29.1% 89 3.934 34 9.955
gt2 91.65% 643.634 8.35% 236 0.412 43 0.139
khb05250 99.9336% 7317.49 0.0664% 5 0.106 2 0.105
l152lav 30.1% 65.4949 69.9% 552 15.614 149 16.251
lp4l 76% 5.875 24% 3 0.059 3 0.160
lseu 68.1% 91.0289 31.9% 61 0.181 46 0.349
manna81 100% 0 0% 0 0.143 0 0.147
mas76 4.2% 1065.02 95.8% 309659 651.702 377398 2608.890
misc01 44.5% 281.057 55.5% 251 3.836 274 7.151
misc02 56.6% 295.312 43.4% 19 0.148 10 0.191
misc03 9.8% 1308.17 90.2% 255 3.73 496 11.875
misc05 45.2% 29.3913 54.8% 103 1.658 33 0.823
misc06 26.5% 6.83269 73.5% 17 1.110 17 2.365
misc07 5.8% 1313.75 94.2% 12139 462.649 25940 1536.48
mitre 100% 0 0% 15 4.394 15 10.759
mod008 21.9% 12.5493 78.1% 345 0.937 13 0.095
mod010 28% 11.5 72% 25 0.567 2 0.440
mod011 68.2% 2.40503e+06 31.8% 707 2633.340 250 3539.000
mod013 30.1% 17.4348 69.9% 115 0.317 107 0.422
modglob 73.7% 81583 26.3% 1879 48.692 2387 75.699
nw04 9.1% 501.358 90.9% 83 75.879 48 109.610
p0033 99.9159% 0.478261 0.0841% 3 0.005 3 0.007
p0040 100% 62027 0% 0 0.002 0 0.001
p0201 46% 400 54% 69 1.147 50 1.635
p0282 96.99% 2458.44 3.01% 23 0.218 12 0.261
p0291 48.5% 5223.75 51.5% 0 0.017 0 0.018
p0548 99.9274% 6.08471 0.0726% 9 0.076 6 0.157
p2756 98.49% 6.56956 1.51% 7 0.364 13 1.205
pipex 63.5% 5.30334 36.5% 19 0.041 12 0.050
pk1 0% 11 100% 243317 956.355 189740 1468.170
pp08aCUTS 87.1% 240.666 12.9% 711 12.363 658 18.583
pp08a 94.38% 258.537 5.62% 392 4.633 372 4.481
qiu 0% 798.766 100% 19399 2780.000 19399 2901.890
qnet1 71% 509.709 29% 53 3.156 74 26.939
qnet1 o 85.1% 585.272 14.9% 17 1.267 13 3.826
rentacar 51% 759381 49% 11 12.047 11 14.973
rgn 15.9% 28.0903 84.1% 2089 2.143 1703 3.826
sample2 46.5% 68.4556 53.5% 35 0.092 33 0.103
sentoy 24.9% 50.6089 75.1% 52 0.175 53 0.266
set1al 99.9521% 2.2619 0.0479% 5 0.056 6 0.145
set1cl 34.7% 6484.25 65.3% 0 0.021 0 0.023
stein15 0% 2 100% 42 0.058 44 0.068
stein27 0% 5 100% 1628 3.785 1537 3.721
stein45 0% 8 100% 29676 218.862 28882 215.015
vpm1 89.1% 0.5 10.9% 17 0.092 17 0.107
vpm2 77% 0.888645 23% 1299 15.646 477 5.723

Table 6 Results in a Branch-and-Cut framework on the instances solved by both the SD and the CGD method.

15

References

1. Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.K.,Smeltink, J.W.: Market split and basis reduction:
Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal on Computing12(3), 192–
202 (2000). DOI http://dx.doi.org/10.1287/ijoc.12.3.192.12635

2. Andersen, K., Cornúejols, G., Li, Y.: Reduce-and-split cuts: Improving the performance of mixed integer
Gomory cuts. Management Science51(11), 1720–1732 (2005)

3. Balas, E.: Disjunctive programming. Annals of Discrete Mathematics5, 3–51 (1979)
4. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in a branch-and-cut frame-

work. Management Science42(9), 1229–1246 (1996)
5. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Programming113(2), 219–240

(2008)
6. Coin-or cut generation library. URLhttps://projects.coin-or.org/Cgl
7. ILOG: ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly,France (2007)
8. Karamanov, M., Cornúejols, G.: Branching on general disjunctions. Tech. rep., Carnegie Mellon Univer-

sity (2005). URLhttp://integer.tepper.cmu.edu
9. Owen, J., Mehrotra, S.: Experimental results on using general disjunctions in branch-and-bound for

general-integer linear program. Computational Optimizationand Applications20, 159–170 (2001)

