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a b s t r a c t

Intersection cuts were introduced by Balas and the corner polyhedron by Gomory. Balas showed that
intersection cuts are valid for the corner polyhedron. In this paper we show that, conversely, every
nontrivial facet-defining inequality for the corner polyhedron is an intersection cut.

© 2010 Elsevier B.V. All rights reserved.

We consider a mixed integer linear set

Ax = b
xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n

(1)

where p ≤ n, A is a matrix inQm×n, and b is a column vector inQm.
We assume that A has full row rankm. Given a feasible basis B, let
N = {1, . . . , n} \ B index the nonbasic variables. We rewrite the
system Ax = b as

xi = b̄i −
∑
j∈N

āijxj for i ∈ B (2)

where b̄i ≥ 0, i ∈ B.
The corner polyhedron introduced by Gomory [7] is obtained

from (1) by dropping the nonnegativity restriction on all the basic
variables xi, i ∈ B, in (2). Note that in this relaxation we can drop
the constraints xi = b̄i−

∑
j∈N āijxj for all i ∈ B∩{p+1, . . . , n} since

these variables xi are continuous and only appear in one equation
and no other constraint. Therefore from now onwe assume that all
basic variables in (2) are integer variables, i.e. B ⊆ {1, . . . , p}.
Therefore the relaxation of (1) introduced by Gomory is the

mixed integer set

xi = b̄i −
∑
j∈N

āijxj for i ∈ B

xi ∈ Z for i = 1, . . . , p
xj ≥ 0 for j ∈ N.

(3)

∗ Corresponding address: Tepper School of Business, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
E-mail addresses: conforti@math.unipd.it (M. Conforti), gc0v@andrew.cmu.edu

(G. Cornuéjols), giacomo@math.unipd.it (G. Zambelli).

The convex hull of the feasible solutions to (3) is called the cor-
ner polyhedron relative to the basis B and it is denoted by corner(B).
Let P(B) be the linear relaxation of (3). P(B) is an |N|-

dimensional polyhedron with a unique vertex, namely x̄i = b̄i, for
i ∈ B, x̄j = 0, for j ∈ N , and with |N| extreme rays, r̄ j for j ∈ N ,
defined by

r̄ jh =

{
−āhj if h ∈ B,
1 if j = h,
0 if h ∈ N \ {j}.

(4)

The corner polyhedron has been investigated over the last few
decades. It is well known, and easy to prove, that corner(B) is
nonempty if and only if there exists a point in Zp×Rn−p satisfying
xi = b̄i −

∑
j∈N āijxj for all i ∈ B. Furthermore, if corner(B) is

nonempty, then it is |N|-dimensional, and its extreme rays are r̄ j
for j ∈ N . We will assume throughout this article that corner(B) is
nonempty.
Clearly, P(B) coincides with corner(B) when x̄i ∈ Z for i =

1, . . . , p. If this is not the case, x̄ does not belong to corner(B)
and we address the problem of finding valid inequalities for the
set (1) that are violated by the point x̄. Balas [2] proposed the
following construction to generate valid inequalities for the corner
polyhedron that cut off the basic solution x̄.
Consider a closed convex set C ⊆ Rn such that the interior of C

contains the point x̄. Assume that the interior of C contains no point
in Zp × Rn−p. For j ∈ N , define

αj = max{α ≥ 0 : x̄+ αr̄ j ∈ C}. (5)
Since x̄ is in the interior of C , αj > 0.When rj belongs to the recession
cone of C , we have αj = +∞. Define 1

+∞
= 0. The inequality∑

j∈N

xj
αj
≥ 1
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is the intersection cut defined by C .
Balas [2] showed that intersection cuts are valid for corner(B).

The following theoremprovides a converse statement, namely that
corner(B) is defined by the intersection cuts.
A valid inequality for corner(B) is trivial if it is implied by the

nonnegativity constraints xj ≥ 0, j ∈ N . Every nontrivial valid
inequality for corner(B) can be expressed in terms of the nonbasic
variables only, and can bewritten in the form

∑
j∈N γjxj ≥ 1,where

γj ≥ 0 for all j ∈ N . We say that such an inequality is minimal if
there is no other valid inequality

∑
j∈N γ

′

j xj ≥ 1 for corner(B) such
that γ ′j ≤ γj for all j ∈ N , and the inequality is strict for at least one
index j ∈ N . We say that it is rational if γj ∈ Q for all j ∈ N . Since
A and b are rational, every nontrivial facet-defining inequality for
corner(B) is rational and minimal.

Theorem 1. If corner(B) is nonempty, every nontrivial rational
minimal valid inequality for corner(B) is an intersection cut.

Proof. Assume that corner(B) is nonempty, and let
∑
j∈N γjxj ≥ 1

be a rational minimal valid inequality for corner(B). Consider the
simplex

S =

{
x ∈ Rn |

∑
j∈N

γjxj ≤ 1, xj ≥ 0 for j ∈ N,

xi = b̄i −
∑
j∈N

āijxj for i ∈ B

}
.

We will enlarge S into a convex set C containing x̄ in its interior
but no point of Zp × Rn−p, and observe that

∑
j∈N γjxj ≤ 1 is the

intersection cut defined by C . This is straightforward in the pure
integer case, since we only need to relax the inequalities xj ≥ 0,
j ∈ N . The crux of the proof is how to do this in the mixed integer
case. We first project S onto the space of integer variables (note
that any polytope may arise as the projection of a simplex), then
we enlarge it to a set K and construct a cylinder over K .
(1) No face F of S containing x̄ has a point of Zp×Rn−p in its relative
interior (including the improper face F = S).
Indeed, let x̃ be a point of S in Zp × Rn−p. Since S ⊆ P(B), x̃

belongs to corner(B) and since
∑
j∈N γjxj ≥ 1 is a valid inequality

for corner(B), then
∑
j∈N γjx̃j = 1.

Let F be a face of S containing x̄, and suppose that x̃ is in the
relative interior of F . Then there exists a scalar λ > 1 such that
z = x̄ + λ(x̃ − x̄) is in F . Since x̄j = 0, j ∈ N and

∑
j∈N γjx̃j = 1,

then
∑
j∈N γjzj > 1. This contradicts the fact that z ∈ S and (1) is

proven.
Let S̃ = S + L where L = {0}p × Rn−p. Since S is a rational

polyhedron and the lineality space of S̃ contains L, the polyhedron
S̃ can be expressed as S̃ = {x ∈ Rn |

∑p
j=1 c

i
jxj ≤ di, i = 1, . . . , t}

for some c1, . . . , ct ∈ Zp and d1, . . . , dt ∈ Z. (Indeed {x ∈ Rp |∑p
j=1 c

i
jxj ≤ di, i = 1, . . . , t} is the projection of S onto Rp.)

(2) No face of S̃ containing x̄ has a point of Zp × Rn−p in its relative
interior.
Let F̃ be a face of S̃ and let F = S ∩ F̃ . Then F is a face of S

and F̃ = F + L. Therefore, since L is in the lineality space of F̃ ,
we have relint(F̃) = relint(F) + L, where relint(·) denotes the
relative interior of a set. Assume F̃ contains x̄. Since x̄ belongs to
S and F = S ∩ F̃ , we have x̄ ∈ F . Assume relint(F̃) contains x̃ in
Zp × Rn−p. Then x̃ + L is contained in relint(F̃) ∩ (Zp × Rn−p).
Since relint(F̃) = relint(F) + L, we have x̃ + L contains a point in
relint(F) ∩ (Zp × Rn−p), a contradiction to (1). This proves (2).
(3) There exists a convex set K ⊂ Rp with no point of Zp in its interior
such that the set C := K × Rn−p contains x̄ in its interior and S̃ ⊆ C .
Assume, without loss of generality, that x̄ satisfies at equality

the first h constraints defining S̃ (possibly h = 0), and none of the
other constraints. That is

p∑
j=1

c ij x̄j = di i = 1, . . . , h;

p∑
j=1

c ij x̄j < di i = h+ 1, . . . , t.

Define d′i = di+1 for i = 1, . . . , h and d
′

i = di for i = h+1, . . . , t ,
and let K = {x ∈ Rp |

∑p
j=1 c

i
jxj ≤ d

′

i, . . . , i = 1, . . . , t} and
C = K × Rn−p. Note that C = {x ∈ Rn |

∑p
j=1 c

i
jxj ≤ d

′

i, . . . , i =
1, . . . , t}. By construction, x̄ is in the interior of C and S̃ ⊆ C .
We only need to show that K contains no point of Zp in its

interior. Suppose not. Then there exists x̃ ∈ Zp × Rn−p such that
x̃ is in the interior of C . Hence

∑p
j=1 c

i
j x̃j < d′i for i = 1, . . . , t .

By definition of d′ and since x̃j ∈ Z for j = 1, . . . , p, we have∑p
j=1 c

i
j x̃j ≤ di for i = 1, . . . , h, and

∑p
j=1 c

i
j x̃j < di for i =

h + 1, . . . , t . Let J be the set of indices i such that
∑p
j=1 c

i
j x̃j = di,

and F̃ = {x ∈ S̃ |
∑p
j=1 c

i
j x̃j = di, i ∈ J}. By construction, F̃ is a

face of S̃ containing x̄, and x̃ is a point of Zp × Rn−p in the relative
interior of F̃ , a contradiction to (2) and this proves (3).
Let

∑
j∈N α

−1
j xj ≥ 1 be the intersection cut defined by C , where

αj is defined by (5) for all j ∈ N . Since x̄ + γ−1j r̄
j
∈ S and S ⊆ C ,

the definition of αj implies γ−1j ≤ αj, j ∈ N . By minimality of∑
j∈N γjxj ≥ 1, we have γj ≤ α

−1
j , thus γj = αj for all j ∈ N . �

We conclude this note with two consequences. The convex
sets needed to generate minimal intersection cuts are of the form
K×Rn−p, whereK is amaximal lattice-free convex set inRp (lattice-
freemeans that K does not contain any point of Zp in its interior). A
theorem of Lovász [9] states that maximal lattice-free convex sets
are polyhedra.
An attractive feature of minimal intersection cuts is that they

are given by ‘‘formulas’’ depending only on the number p of integer
variables and the vector b̄ ∈ R|B|. Indeed, let x̃ ∈ Rp be defined
by x̃i = x̄i, i = 1, . . . , p. Given a lattice-free convex set K ⊂ Rp
containing x̃ in its interior, let γK : Rp → R be the gauge of K − x̃,
which is defined by

γK (r) = inf{t | x̃+ t−1r ∈ K}, r ∈ Rp.

Then the intersection cut defined by K×Rn−p is
∑
j∈N γK (r̃

j)sj ≥ 1,
where r̃ j ∈ Rp is defined by r̃ ji = r̄ ji , i = 1, . . . , p. Note that
the above function γK gives a valid inequality for any choice of the
coefficients āij and for any number of continuous variables.
A functionψ : Rp → R is a valid function if

∑
j∈N ψ(r̃

j)xj ≥ 1 is
valid for corner(B) for any choice of the āijs and for any number
of continuous variables. Our theorem, together with a result of
Borozan and Cornuéjols [4], implies that all valid functions are
dominatedby functions of the formγK , for some lattice-free convex
set K , and furthermore every inequality of corner(B) is generated
by some valid function. This proves the following.

Corollary 2. Every minimal valid function is continuous and piece-
wise linear.

This is related to a conjecture ofGomory and Johnson [8], stating
that all valid functions for the infinite group problem are piecewise
linear. This conjecture was disproved in [3], although the above
corollary shows that the statement holds when the number of
integer variables is fixed.
A nontrivial result in integer programming is that, for a mixed

integer linear set (1) with rational data, the split closure is a
polyhedron (Cook, Kannan and Schrijver [5]; alternate proofs are
presented in [1,6,10]). The split closure is the set obtained from all
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intersection cuts generated from all bases (feasible and infeasible)
and all split disjunctions [1]. More generally, define the intersection
closure of a mixed integer linear set as the set obtained from all
intersection cuts generated from all bases (feasible and infeasible)
and all lattice-free convex sets. Theorem 1 implies that, for amixed
integer linear set with rational data, the intersection closure is the
intersection of a finite number of corner polyhedra. Therefore the
intersection closure is a polyhedron.

Corollary 3. The intersection closure of a rational mixed integer
linear set is a polyhedron.
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