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Abstract

In 1988, Nemhauser and Wolsey introduced the concept of MIR inequality for mixed
integer linear programs. In 1998, Wolsey defined MIR inequalities differently. In
some sense these definitions are equivalent. However, this note points out that the
natural concepts of MIR closures derived from these two definitions are distinct.
Dash, Günlük and Lodi made the same observation independently.

Let S := {(x, y) ∈ Zn
+ × Rp

+ : Ax + Gy ≤ b} be a mixed integer set. Here
A ∈ Rm×n and G ∈ Rm×p are matrices and b ∈ Rm is a vector. Let P :=
{(x, y) ∈ Rn

+ × Rp
+ : Ax + Gy ≤ b} be the polyhedron that arises as the

natural linear relaxation of S. We assume P 6= ∅.

Nemhauser and Wolsey [6,7] define MIRNW inequalities by the following pro-
cedure.

If

c1x + hy ≤ c1
0

and

c2x + hy ≤ c2
0
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are valid inequalities for P , and π = c2 − c1 ∈ Zn, π0 = bc2
0 − c1

0c and γ =
c2
0 − c1

0 − π0, then

πx +
(
c1x + hy − c1

0

)
/(1− γ) ≤ π0

is valid for S.

Define the MIRNW closure as the intersection of all MIRNW inequalities.
Nemhauser and Wolsey [7] proved that the MIRNW closure is identical to the
split closure [1] and the Gomory mixed integer closure [4] (see [2] for another
proof of the last identity).

Later, Wolsey [8] (see also Marchand and Wolsey [5]) defined the MIRW

inequality as being generated from a single constraint ax + gy ≤ b where
(x, y) ∈ Zn

+×Rp
+. Specifically, let f0 := b−bbc and fj := aj−bajc. The MIRW

inequality is

n∑
j=1

(
bajc+

(fj − f0)
+

1− f0

)
xj +

1

1− f0

∑
j:gj<0

gjyj ≤ bbc. (1)

For the mixed integer set S, let us define the MIRW closure as the set of all
MIRW inequalities that can be generated from any valid inequality for the
polyhedron P . (By Farkas’ Lemma, every valid inequality for P is of the form
uAx + uGy − vx− wy ≤ ub + t where u ∈ Rm

+ , v ∈ Rn
+, w ∈ Rp

+ and t ∈ R+.)

In this note, we point out that MIRNW ⊂ MIRW and that the inclusion is
strict in general. This was also observed independently by Dash, Günlük and
Lodi [3].

First, we give an example showing that MIRNW 6= MIRW . Let P be the
triangle in R2 defined as follows

−2x1 + x2 ≤ 0

2x1 + x2 ≤ 2

x2 ≥ 0.

Let S := P ∩ Z2. The inequality x2 ≤ 0 is a MIRNW inequality. Indeed

−1

2
x1 +

1

4
x2 ≤ 0

1

2
x1 +

1

4
x2 ≤

1

2

are valid for P . Applying the MIRNW procedure we get π =

 1

0

, π0 = b1
2
c =

2
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Fig. 1. Examle showing that MIRNW 6= MIRW .

0, γ = 1
2
. Thus the following inequality is valid for S.

x1 +
−1

2
x1 + 1

4
x2

1
2

≤ 0, i.e. x2 ≤ 0.

Therefore x2 ≤ 0 is valid for the MIRNW closure. However x2 ≤ 0 is not valid
for the MIRW closure. We show this by contradiction. Let us assume that
there exists a valid inequality αx1 + βx2 ≤ δ for P such that x2 ≤ 0 is a
MIRW inequality. By Farkas’ Lemma, there exist multipliers u1, u2, v, t ≥ 0
satisfying

α = −2u1 + 2u2

β = u1 + u2 − v

δ = 2u2 + t.

Let f(η) = η − bηc. Can we generate x2 ≤ 0 as the MIRW inequality(
bαc+

(f(α)− f(δ))+

1− f(δ)

)
x1 +

(
bβc+

(f(β)− f(δ))+

1− f(δ)

)
x2 ≤ bδc?

For this to be the case, we must have

• δ < 1 since bδc = 0,

• α ≥ 0 since
(
bαc+ (f(α)−f(δ))+

1−f(δ)

)
= 0,

• δ < β since
(
bβc+ (f(β)−f(δ))+

1−f(δ)

)
> 0.

α ≥ 0 is equivalent to u2 ≥ u1. Furthermore δ < β and v, t ≥ 0 imply u2 < u1.
This is a contradiction, therefore there exists no valid inequality for P such
that x2 ≤ 0 is a MIRW inequality.
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To see that MIRNW ⊂ MIRW , we express Gomory Mixed Integer (GMI) in-
equalities in a form similar to (1). Recall that given an equality ax + gy = b
where (x, y) ∈ Zn

+ × Rp
+, the GMI inequality is

∑
j:fj≤f0

fj

f0

xj +
∑

j:fj>f0

1− fj

1− f0

xj +
∑

j:gj>0

gj

f0

yj −
∑

j:gj<0

gj

1− f0

yj ≥ 1 (2)

where fj and f0 are defined as above.

Lemma 1 Consider a mixed integer set with m constraints S := {(x, y) ∈
Zn

+ × Rp
+ : Ax + Gy ≤ b}. We assume that the constraints Ax + Gy ≤ b

contain the nonnegativity constraints on x and y. Let s := b − Ax − Gy be a
nonnegative vector of slack variables. For any λ ∈ Rm, let a := λA, g := λG,
δ := λb, fj := aj−bajc and f0 := δ−bδc. The Gomory mixed integer inequality
generated from λAx + λGy + λs = λb is

n∑
j=1

(
bajc+

(fj − f0)
+

1− f0

)
xj +

1

1− f0

∑
j:gj<0

gjyj +
1

1− f0

∑
i:λi<0

λisi ≤ bδc. (3)

Proof: Applying the definition (2) to λAx + λGy + λs = λb we get

∑
j:fj≤f0

fj

f0

xj+
∑

j:fj>f0

1− fj

1− f0

xj+
∑

j:gj>0

gj

f0

yj−
∑

j:gj<0

gj

1− f0

yj+
∑

i:λi>0

λi

f0

si−
∑

i:λi<0

λi

1− f0

si ≥ 1.

Substituting s = b−Ax−Gy in this inequality, it is straightforward to check
that the result is inequality (3).

2

Recall that MIRW inequalities are obtained from valid inequalities for P . This
corresponds to λ ≥ 0 in Lemma 1. In this case (3) is identical to (1). Therefore
MIRW inequalities are GMI inequalities.

Other authors have defined the MIRW closure when S is in equality form [5,3],
in which case it is trivially identical to the Gomory mixed integer closure.
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