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Abstract

In this paper we study general two-term disjunctions on affine cross-sections of the second-
order cone. Under some mild assumptions, we derive a closed-form expression for a convex
inequality that is valid for such a disjunctive set, and we show that this inequality is suf-
ficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and
paraboloids and a wide class of two-term disjunctions—including split disjunctions—on hy-
perboloids. Our approach relies on the work of Kılınç-Karzan and Yıldız which considers
general two-term disjunctions on the second-order cone.

Keywords: Mixed-integer conic programming, second-order cone programming, cutting
planes, disjunctive cuts

1 Introduction

In this paper we consider the mixed-integer second-order conic set

S := {x ∈ Ln : Ax = b, xj ∈ Z ∀j ∈ J}

where Ln is the n-dimensional second-order cone Ln := {x ∈ Rn : ‖(x1; . . . ;xn−1)‖ ≤ xn}, A
is an m × n real matrix of full row rank, d and b are real vectors of appropriate dimensions,
J ⊆ {1, . . . , n}, and ‖.‖ denotes the Euclidean norm. The set S appears as the feasible solution
set or a relaxation thereof in mixed-integer second order cone programming problems. Because
the structure of S can be very complicated, a first approach to solving

sup
{
d>x : x ∈ S

}
. (1)

entails solving the relaxed problem obtained after dropping the integrality requirements on the
variables:

sup
{
d>x : x ∈ C

}
where C := {x ∈ Ln : Ax = b} .

The set C is called the natural continuous relaxation of S. Unfortunately, the continuous relax-
ation C is often a poor approximation to the mixed-integer conic set S, and tighter formulations
are needed for the development of practical strategies for solving (1). An effective way to improve
the approximation quality of the continuous relaxation C is to strengthen it with additional con-
vex inequalities that are valid for S but not for the whole of C. Such valid inequalities can be
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derived by exploiting the integrality of the variables xj , j ∈ J , and enhancing C with linear
two-term disjunctions l>1 x ≥ l1,0 ∨ l>2 x ≥ l2,0 that are satisfied by all solutions in S. Valid
inequalities that are obtained from disjunctions using this approach are known as disjunctive
cuts. In this paper we study two-term disjunctions on the set C and give closed-form expressions
for the strongest disjunctive cuts that can be obtained from such disjunctions.

Disjunctive cuts were introduced by Balas in the context of mixed-integer linear programming
[3] and have since been the cornerstone of theoretical and practical achievements in integer
programming. There has been a lot of recent interest in extending disjunctive cutting-plane
theory from the domain of mixed-integer linear programming to that of mixed-integer conic
programming [2, 7, 9, 11, 12, 18]. Kılınç-Karzan [13] studied minimal valid linear inequalities
for general disjunctive conic sets and showed that these are sufficient to describe the associated
closed convex hull under a mild technical assumption. Bienstock and Michalka [6] studied the
characterization and separation of linear inequalities that are valid for the epigraph of a convex,
differentiable function whose domain is restricted to the complement of a convex set. On the
other hand, several papers in the last few years have focused on deriving closed-form expressions
for nonlinear convex inequalities that fully describe the convex hull of a disjunctive second-order
conic set in the space of the original variables. Dadush et al. [10] and Andersen and Jensen [1]
derived split cuts for ellipsoids and the second-order cone, respectively. Modaresi et al. extended
these results to split disjunctions on cross-sections of the second-order cone [16] and compared
the effectiveness of split cuts against conic MIR inequalities and extended formulations [15].
For disjoint two-term disjunctions on cross-sections of the second-order cone and under the
assumption that {x ∈ C : l>1 x = l1,0} and {x ∈ C : l>2 x = l2,0} are bounded, Belotti et al.
[4, 5] proved that there exists a unique cone which describes the convex hull of the disjunction.
They also identified a procedure for identifying this cone when C is an ellipsoid. Using the
structure of minimal valid linear inequalities, Kılınç-Karzan and Yıldız [14] derived a family of
convex inequalities which describes the convex hull of a general two-term disjunction on the
whole second-order cone. In this paper, we pursue a similar goal: We study general two-term
disjunctions on a cross-section C of the second-order cone, namely C = {x ∈ Ln : Ax = b}.
Given a disjunction l>1 x ≥ l1,0 ∨ l>2 x ≥ l2,0 on C, we let

C1 :=
{
x ∈ C : l>1 x ≥ l1,0

}
and C2 :=

{
x ∈ C : l>2 x ≥ l2,0

}
.

In order to derive the tightest disjunctive cuts that can be obtained for S from the disjunction
C1 ∪ C2, we study the closed convex hull conv(C1 ∪ C2). In particular, we are interested in
convex inequalities that may be added to the description of C to obtain a characterization
of conv(C1 ∪ C2). Our starting point is the paper [14] about two-term disjunctions on the
second-order cone Ln. We extend the main result of [14] to cross-sections of the second-order
cone. Such cross-sections include ellipsoids, paraboloids, and hyperboloids as special cases. Our
results generalize the work of [10, 16] on split disjunctions on cross-sections of the second-order
cone and [4] on disjoint two-term disjunctions on ellipsoids. We note here that general results
on convexifying the intersection of a cross-section of the second-order cone with a non-convex
cone defined by a single homogeneous quadratic were recently obtained independently in [8].

We first show in Section 2 that the continuous relaxation C can be assumed to be the
intersection of a lower-dimensional second-order cone with a single hyperplane. In Section 3,
we give a complete description of the convex hull of a homogeneous two-term disjunction on
the whole second-order cone. In Section 4, we prove our main result, Theorem 3, characterizing
conv(C1 ∪ C2) under certain conditions. We end the paper with two examples which illustrate
the applicability of Theorem 3.
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Throughout the paper, we use convK, convK, coneK, and spanK to refer to the convex
hull, closed convex hull, conical hull, and linear span of a set K, respectively. We also use
bdK, intK, and dimK to refer the boundary, interior, and dimension of K. The dual cone of
K ⊆ Rn is K∗ := {α ∈ Rn : x>α ≥ 0 ∀x ∈ K}. The second-order cone Ln is self-dual, that is,
(Ln)∗ = Ln. Given a vector u ∈ Rn, we let ũ := (u1; . . . ;un−1) denote the subvector obtained
by dropping its last entry.

2 Intersection of the Second-Order Cone with an Affine Sub-
space

In this section, we show that the continuous relaxation C can be assumed to be the intersection
of a lower-dimensional second-order cone with a single hyperplane. Let E := {x ∈ Rn : Ax = b}
so that C = Ln ∩ E. We are going to use the following lemma to simplify our analysis.

Lemma 1. Let V be a p-dimensional linear subspace of Rn. The intersection Ln ∩ V is either
the origin, a half-line, or a bijective linear transformation of Lp.

See Section 2.1 of [5] for a similar result. We do not give a formal proof of Lemma 1 but
just note that it can be obtained by observing that the second-order cone is the conic hull of
a (one dimension smaller) sphere, and that the intersection of a sphere with an affine space is
either empty, a single point (when the affine space intersects the sphere but not its interior),
or a lower dimensional sphere of the same dimension as the affine space (when the affine space
intersects the interior of the sphere).

Lemma 1 implies that, when b = 0, C is either the origin, a half-line, or a bijective linear
transformation of Ln−m. The closed convex hull conv(C1 ∪ C2) can be described easily when
C is a single point or a half-line. Furthermore, the problem of characterizing conv(C1 ∪ C2)
when C is a bijective linear transformation of Ln−m can be reduced to that of convexifying an
associated two-term disjunction on Ln−m. We refer the reader to [14] for a detailed study of the
closed convex hulls of two-term disjunctions on the second-order cone.

In the remainder, we focus on the case b 6= 0. Note that, whenever this is the case, we can
permute and normalize the rows of (A, b) so that its last row reads (a>m, 1), and subtracting a
multiple of (a>m, 1) from the other rows if necessary, we can write the remaining rows of (A, b)
as (Ã, 0). Therefore, we can assume without any loss of generality that all components of b are
zero except the last one. Isolating the last row of (A, b) from the others, we can then write

E =
{
x ∈ Rn : Ãx = 0, a>mx = 1

}
.

Let V := {x ∈ Rn : Ãx = 0}. By Lemma 1, Ln ∩ V is the origin, a half-line, or a bijective
linear transformation of Ln−m+1. Again, the first two cases are easy and not of interest in our
analysis. In the last case, we can find a matrix D whose columns form an orthonormal basis for
V and define a nonsingular matrix H such that {y ∈ Rn−m+1 : Dy ∈ Ln} = HLn−m+1. Then
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we can represent C equivalently as

C =
{
x ∈ Ln : x = Dy, a>mx = 1

}
= D

{
y ∈ Rn−m+1 : Dy ∈ Ln, a>mDy = 1

}
= D

{
y ∈ Rn−m+1 : y ∈ HLn−m+1, a>mDy = 1

}
= DH

{
z ∈ Ln−m+1 : a>mDHz = 1

}
.

The set C = Ln ∩ E is a bijective linear transformation of {z ∈ Ln−m+1 : a>mDHz = 1}.
Furthermore, the same linear transformation maps any two-term disjunction in {z ∈ Ln−m+1 :
a>mDHz = 1} to a two-term disjunction in C and vice versa. Thus, without any loss of generality,
we can take m = 1 in (1) and study the problem of describing conv(C1 ∪ C2) where

C =
{
x ∈ Ln : a>x = 1

}
,

C1 =
{
x ∈ C : l>1 x ≥ l1,0

}
, and C2 =

{
x ∈ C : l>2 x ≥ l2,0

}
.

(2)

In Section 4 we will give a full description of conv(C1 ∪ C2) under certain conditions.

3 Homogeneous Two-Term Disjunctions on the Second-Order
Cone

In this section, we study the convex hull of a homogeneous two-term disjunction c>1 x ≥ 0∨ c>2 x ≥
0 on the second-order cone. Let

Q1 :=
{
x ∈ Ln : c>1 x ≥ 0

}
and Q2 :=

{
x ∈ Ln : c>2 x ≥ 0

}
. (3)

The main result of this section characterizes conv(Q1 ∪ Q2). Note that Q1 and Q2 are closed,
convex, pointed cones; therefore, conv(Q1 ∪ Q2) is always closed (see, e.g., Rockafellar [17,
Corollary 9.1.3]).

When Q1 ⊆ Q2, we have conv(Q1 ∪Q2) = Q2. Similarly, when Q1 ⊇ Q2, we have conv(Q1 ∪
Q2) = Q1. In the remainder of this section, we focus on the case where Q1 6⊆ Q2 and Q1 6⊇ Q2.

Assumption 1. Q1 6⊆ Q2 and Q1 6⊇ Q2.

We also make the following technical assumption.

Assumption 2. Q1 ∩ intLn 6= ∅ and Q2 ∩ intLn 6= ∅.

This assumption will be useful later when we use Theorem 1 whose proof relies on conic
duality.

By Assumption 1, we have Q1, Q2 ( Ln, and by Assumption 2, we have that Q1 and Q2

are full-dimensional. This implies c1, c2 /∈ ±Ln, or equivalently ‖c̃i‖2 > c2i,n, for i ∈ {1, 2}. By
scaling c1 and c2 with appropriate positive scalars if necessary, we may assume without any loss
of generality that

‖c̃1‖2 − c21,n = ‖c̃2‖2 − c22,n = 1. (4)

These have the following consequences.
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Remark 1. Let c1 and c2 satisfy (4). Then

M := ‖c̃1‖2 − c21,n −
(
‖c̃2‖2 − c22,n

)
= 0,

N := ‖c̃1 − c̃2‖2 − (c1,n − c2,n)2 = 2− 2
(
c̃>1 c̃2 − c1,nc2,n

)
.

Remark 2. Let Q1 and Q2, defined as in (3), satisfy Assumption 1. Then we have c1−c2 /∈ ±Ln.
Indeed, c1 − c2 ∈ Ln implies that (c1 − c2)>x ≥ 0 for all x ∈ Ln, and this implies C1 ⊆ C2;
similarly, c2 − c1 ∈ Ln implies C2 ⊆ C1. Hence,

N = ‖c̃1 − c̃2‖2 − (c1,n − c2,n)2 > 0.

The following result from [14] gives a valid convex inequality for conv(Q1 ∪Q2).

Theorem 1 ([14], Theorem 3 and Remark 2). Let Q1 and Q2 be defined as in (3). Suppose
Assumptions 1 and 2 hold. Then the inequality

− (c1 + c2)
>x ≤

√(
(c1 − c2)>x

)2
+N (x2n − ‖x̃‖2) (5)

is valid for conv(Q1 ∪Q2). Furthermore, this inequality is convex in Ln.

The next proposition shows that (5) can be written in conic quadratic form in Ln except in
the region where both clauses of the disjunction are satisfied. Its proof is a simple extension of
the proofs of Propositions 3 and 4 in [14] and therefore omitted. Let

r :=

(
c̃1 − c̃2

−c1,n + c2,n

)
.

Proposition 1 ([14], Propositions 3 and 4). Let Q1 and Q2 be defined as in (3). Suppose
Assumptions 1 and 2 hold. Let x′ ∈ Ln be such that c>1 x

′ ≤ 0 or c>2 x
′ ≤ 0. Then the following

statements are equivalent:

i) x′ satisfies (5).

ii) x′ satisfies the conic quadratic inequality

Nx− 2(c>1 x)r ∈ Ln. (6)

iii) x′ satisfies the conic quadratic inequality

Nx+ 2(c>2 x)r ∈ Ln. (7)

Remark 3. When c1 and c2 satisfy (4), the inequalities (6) and (7) describe a cylindrical second-
order cone whose lineality space contains span{r}. This follows from Remark 1 by observing that

N = 2− 2
(
c̃>1 c̃2 − c1,nc2,n

)
= 2c>1 r = −2c>2 r.

The next theorem is the main result of this section. It shows that the inequality (5) is in fact
sufficient to describe conv(Q1 ∪Q2) when c1 and c2 are scaled so that they satisfy (4). Because
this assumption is without any loss of generality, our result settles one of the cases left open by
Kılınç-Karzan and Yıldız [14], where the right-hand-sides of both terms of the disjunction are
zero in (3).
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Theorem 2. Let Q1 and Q2 be defined as in (3). Suppose Assumptions 1 and 2 hold. Assume
that c1 and c2 have been scaled so that they satisfy (4). Then

conv(Q1 ∪Q2) = {x ∈ Ln : x satisfies (5)} . (8)

Proof. Let D denote the set on the right-hand side of (8). We already know that (5) is valid
for conv(Q1 ∪ Q2). Hence, conv(Q1 ∪ Q2) ⊆ D. Let x′ ∈ D. If x′ ∈ Q1 ∪ Q2, then clearly
x′ ∈ conv(Q1 ∪ Q2). Therefore, suppose x′ ∈ Ln \ (Q1 ∪ Q2) is a point that satisfies (5). By
Proposition 1, x′ satisfies

Nx′ − 2(c>1 x
′)r ∈ Ln and Nx′ + 2(c>2 x

′)r ∈ Ln.

We are going to show that x′ belongs to conv(Q1 ∪Q2).
By Remarks 2 and 3, 0 < N = 2c>1 r = −2c>2 r. Let

α1 :=
−c>1 x′

c>1 r
, α2 :=

−c>2 x′

c>2 r
,

x1 := x′ + α1r, x2 := x′ + α2r.

(9)

It is not difficult to see that c>1 x1 = c>2 x2 = 0. Furthermore, x′ ∈ conv{x1, x2} because
α2 < 0 < α1. Therefore, the only thing we need to show is x1, x2 ∈ Ln. By Remark 3

N r − 2(c>1 r)r = N r + 2(c>2 r)r = 0.

Hence,

Nx1 − 2(c>1 x1)r = Nx′ − 2(c>1 x
′)r ∈ Ln and

Nx2 + 2(c>2 x2)r = Nx′ + 2(c>2 x
′)r ∈ Ln.

Now observing that c>1 x1 = c>2 x2 = 0 and N > 0 shows x1, x2 ∈ Ln. This proves x1 ∈ Q1 and
x2 ∈ Q2.

In the next section, we will show that the inequality (5) can also be used to characterize
conv(C1 ∪ C2) where C1 and C2 are defined as in (2).

4 Two-Term Disjunctions on Cross-Sections of the Second-
Order Cone

4.1 The Main Result

Consider C, C1, and C2 defined as in (2). The set C is an ellipsoid when a ∈ intLn, a paraboloid
when a ∈ bdLn, a hyperboloid when a /∈ ±Ln, and empty when a ∈ −Ln. In this section, we
prove our main result, Theorem 3, which characterizes conv(C1∪C2) under some mild conditions.

When C1 ⊆ C2, we have conv(C1 ∪ C2) = C2. Similarly, when C1 ⊇ C2, we have conv(C1 ∪
C2) = C1. In the remainder we concentrate on the case where C1 6⊆ C2 and C1 6⊇ C2.

Assumption 3. C1 6⊆ C2 and C1 6⊇ C2.

We also make the following assumption.
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Assumption 4. C1 ∩ intLn 6= ∅ and C2 ∩ intLn 6= ∅.

This assumption will be useful later when we again use Theorem 1 whose proof relies on
conic duality. The following simple observation underlies our approach.

Observation 1. Let C, C1, and C2 be defined as in (2). Then C1 = {x ∈ C : (β1l1 +γ1a)>x ≥
β1l1,0 + γ1} for any β1 > 0 and γ1 ∈ R. Similarly, C2 = {x ∈ C : (β2l2 + γ2a)>x ≥ β2l2,0 + γ2}
for any β2 > 0 and γ2 ∈ R.

Observation 1 allows us to conclude

C1 =
{
x ∈ C : (l1 − l1,0a)>x ≥ 0

}
and C2 =

{
x ∈ C : (l2 − l2,0a)>x ≥ 0

}
.

By Assumption 3, we have C1, C2 ( C, and by Assumption 4, we have dimC1 = dimC2 = n−1.
This implies li − li,0a /∈ ±Ln, or equivalently ‖l̃i − li,0ã‖2 > (li,n − li,0an)2, for i ∈ {1, 2}. Let

ci := λi(li − li,0a) where λi :=
1√

‖l̃i − li,0ã‖2 − (li,n − li,0an)2
for i ∈ {1, 2}. (10)

Because λ1, λ2 > 0, we can write

C1 =
{
x ∈ C : c>1 x ≥ 0

}
and C2 =

{
x ∈ C : c>2 x ≥ 0

}
.

This scaling ensures that c1 and c2 satisfy (4).
Let Q1 and Q2 be the relaxations of C1 and C2 to the whole cone Ln:

Q1 :=
{
x ∈ Ln : c>1 x ≥ 0

}
and Q2 :=

{
x ∈ Ln : c>2 x ≥ 0

}
.

It is clear that Q1 and Q2 satisfy Assumptions 1-2 because C1 and C2 satisfy Assumptions 3-
4. Define N , M, and r as in Section 3 using c1 and c2. Noting that Q1 and Q2 satisfy
Assumptions 1-2 and c1 and c2 satisfy (4), all results of Section 3 hold for Q1 and Q2. In
particular, Theorem 1 implies that the inequality (5) is valid for conv(C1 ∪ C2). In Theorem 3,
we are going to show that (5) is also sufficient to describe conv(C1 ∪ C2) when the sets C1 and
C2 satisfy certain conditions. The proof of Theorem 3 requires the following technical lemma.

Lemma 2. Let C1 and C2 be defined as in (2). Suppose Assumptions 3 and 4 hold. Let c1 and
c2 be defined as in (10). Suppose a>r 6= 0, and let x∗ := r

a>r
. Let x′ ∈ C \ (C1 ∪C2) satisfy (5).

a) If a>r > 0, then c>1 (x′ − x∗) < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or

(−a+ cone{c2}) ∩ −Ln 6= ∅,
(11)

then c>2 (x′ − x∗) ≥ 0.

b) If a>r < 0, then c>2 (x′ − x∗) < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or

(−a+ cone{c1}) ∩ −Ln 6= ∅,
(12)

then c>1 (x′ − x∗) ≥ 0.
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Proof. By Remarks 2 and 3, N = 2c>1 r = −2c>2 r > 0. From this, we get

Nx∗ − 2(c>1 x
∗)r =

1

a>r

(
N − 2c>1 r

)
r = 0, (13)

Nx∗ + 2(c>2 x
∗)r =

1

a>r

(
N + 2c>2 r

)
r = 0. (14)

Furthermore, a>x′ = a>x∗ = 1.

a) Having x′ /∈ C1 implies c>1 x
′ < 0. Furthermore, it follows from c>1 r = N

2 > 0 that

c>1 x
∗ =

c>1 r

a>r
> 0.

Thus, we get c>1 (x′ − x∗) < 0.

Now suppose (a + cone{c1, c2}) ∩ Ln 6= ∅. Then there exist λ ≥ 0 and 0 ≤ θ ≤ 1 such that
a + λ(θc1 + (1 − θ)c2) ∈ Ln. The point x′ does not belong to either C1 or C2 and satisfies
(5). By Proposition 1, it satisfies (7) as well. Using (14), we can write

N (x′ − x∗) + 2c>2 (x′ − x∗)r ∈ Ln. (15)

Because Ln is self-dual, we get

0 ≤ (a+ λ(θc1 + (1− θ)c2))>(N (x′ − x∗) + 2c>2 (x′ − x∗)r)
= 2c>2 (x′ − x∗)a>r + λ(θc1 + (1− θ)c2)>(N (x′ − x∗) + 2c>2 (x′ − x∗)r)
= 2c>2 (x′ − x∗)a>r + λθ(c1 − c2)>(N (x′ − x∗) + 2c>2 (x′ − x∗)r) + λc>2 (x′ − x∗)(N + 2c>2 r)

= 2c>2 (x′ − x∗)a>r + λθ(c1 − c2)>(N (x′ − x∗) + 2c>2 (x′ − x∗)r)
= 2c>2 (x′ − x∗)a>r + λθ(N (c1 − c2)>(x′ − x∗) + 2c>2 (x′ − x∗)(c1 − c2)>r)
= 2c>2 (x′ − x∗)a>r + λθ(N (c1 + c2)

>(x′ − x∗))
= (2a>r + λθN )c>2 (x′ − x∗) + λθN c>1 (x′ − x∗)

where we have used a>(x′ − x∗) = 0 to obtain the first equality, N + 2c>2 r = 0 to obtain
the third equality, and (c1 − c2)>r = N to obtain the fifth equality. Now it follows from
2a>r + λθN > 0, c>1 (x′ − x∗) < 0, and λθN ≥ 0 that c>2 (x′ − x∗) ≥ 0.

Now suppose (−a + cone{c1, c2}) ∩ Ln 6= ∅, and let λ ≥ 0 and 0 ≤ θ ≤ 1 be such that
−a+λ(θc1 + (1− θ)c2) ∈ Ln. By Proposition 1, x′ satisfies (6), and using (13), we can write

N (x′ − x∗)− 2c>1 (x′ − x∗)r ∈ Ln.

As before, because Ln is self-dual, we get

0 ≤ (−a+ λ(θc1 + (1− θ)c2))>(N (x′ − x∗)− 2c>1 (x′ − x∗)r).

The right-hand side of this inequality is identical to

(2a>r + λ(1− θ)N )c>1 (x′ − x∗) + λ(1− θ)N c>2 (x′ − x∗).

It follows from 2a>r+λ(1−θ)N > 0, c>1 (x′−x∗) < 0, and λ(1−θ)N ≥ 0 that c>2 (x′−x∗) ≥ 0.
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Finally suppose (−a + cone{c2}) ∩ −Ln 6= ∅, and let θ ≥ 0 be such that −a + θc2 ∈ −Ln.
Then using (15),

0 ≥ (−a+ θc2)
>(N (x′ − x∗) + 2c>2 (x′ − x∗)r)

= −2c>2 (x′ − x∗)a>r + θc>2 (x′ − x∗)(N + 2c>2 r)

= −2c>2 (x′ − x∗)a>r.

It follows from a>r > 0 that c>2 (x′ − x∗) ≥ 0.

b) If a>r < 0, then a>(−r) > 0. Since −r =

(
c̃2 − c̃1

−c2,n + c1,n

)
, part (b) follows from part (a)

by interchanging the roles of C1 and C2.

In the next result we show that the inequality (5) is sufficient to describe conv(C1 ∪ C2)
when conditions (11) and (12) hold.

Theorem 3. Let C1 and C2 be defined as in (2). Suppose Assumptions 3 and 4 hold. Let c1
and c2 be defined as in (10). Suppose also that one of the following conditions is satisfied:

a) a>r = 0,

b) a>r > 0 and (11) holds,

c) a>r < 0 and (12) holds.

Then
conv(C1 ∪ C2) = {x ∈ C : x satisfies (5)}. (16)

Proof. Let D denote the set on the right-hand side of (16). The inequality (5) is valid for
conv(C1 ∪ C2) by Theorem 1. Hence, conv(C1 ∪ C2) ⊆ D. Let x′ ∈ D. If x′ ∈ C1 ∪ C2, then
clearly x′ ∈ conv(C1∪C2). Therefore, suppose x′ ∈ C \ (C1∪C2) is a point that satisfies (5). By
Proposition 1, it satisfies (6) and (7) as well. We are going to show that in each case x′ belongs
to conv(C1 ∪ C2).

a) Suppose a>r = 0. By Remarks 2 and 3, N = 2c>1 r = −2c>2 r > 0. Define α1, α2, x1, and x2
as in (9). It is not difficult to see that a>x1 = a>x2 = 1 and c>1 x1 = c>2 x2 = 0. Furthermore,
x′ ∈ conv{x1, x2} because α2 < 0 < α1. One can show that x1, x2 ∈ Ln using the same
arguments as in the proof of Theorem 2. This proves x1 ∈ C1 and x2 ∈ C2.

b) Suppose a>r > 0 and (11) holds. Let x∗ := r
a>r

. Then by Lemma 2, c>1 (x′ − x∗) < 0 and

c>2 (x′ − x∗) ≥ 0.

First, suppose c>2 (x′ − x∗) > 0, and let

α1 :=
−c>1 x′

c>1 (x′ − x∗)
, α2 :=

−c>2 x′

c>2 (x′ − x∗)
,

x1 := x′ + α1(x
′ − x∗), x2 := x′ + α2(x

′ − x∗).
(17)
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As in part a), a>x1 = a>x2 = 1, c>1 x1 = c>2 x2 = 0, and x′ ∈ conv{x1, x2} because α1 < 0 <
α2. To show x1, x2 ∈ Ln, first note Nx∗ − 2(c>1 x

∗)r = Nx∗ + 2(c>2 x
∗)r = 0 as in (13) and

(14). Using this and c>1 x1 = c>2 x2 = 0, we get

Nx1 = Nx1 − 2(c>1 x1)r = (1 + α1)(Nx′ − 2(c>1 x
′)r),

Nx2 = Nx2 + 2(c>2 x2)r = (1 + α2)(Nx′ + 2(c>2 x
′)r).

Clearly, 1 + α2 > 0, so Nx2 ∈ Ln. Furthermore,

1 + α1 =
−c>1 x∗

c>1 (x′ − x∗)
=

−c>1 r
(a>r)c>1 (x′ − x∗)

=
−N

2(a>r)c>1 (x′ − x∗)
> 0

where we have used the relationships N > 0, a>r > 0, and c>1 (x′ − x∗) < 0 to reach the
inequality. It follows that Nx1 ∈ Ln as well. Because N > 0, we get x1, x2 ∈ Ln. This
proves x1 ∈ C1 and x2 ∈ C2.

Now suppose c>2 (x′ − x∗) = 0, and define α1 and x1 as in (17). All of the arguments that we
have just used to show α1 < 0 and x1 ∈ C1 continue to hold. Using Nx∗ + 2c>2 x

∗r = 0, we
can write

N (x′ − x∗) = N (x′ − x∗) + 2c>2 (x′ − x∗)r ∈ Ln.

Because N > 0, we get x′ − x∗ ∈ Ln. Together with c>2 (x′ − x∗) = 0 and a>(x′ − x∗) = 0,
this implies x′ − x∗ ∈ recC2. Then x′ = x1 − α1(x

′ − x∗) ∈ C1 + recC2 because α1 < 0. The
claim now follows from the fact that the last set is contained in conv(C1 ∪C2) (see, e.g., [17,
Theorem 9.8]).

c) Suppose a>r < 0 and (12) holds. Since −r :=

(
c̃2 − c̃1

−c2,n + c1,n

)
, part (c) follows from part

(b) by interchanging the roles of C1 and C2.

The following result shows that when C is an ellipsoid or a paraboloid, the closed convex
hull of any two-term disjunction can be obtained by adding the cut (5) to the description of C.

Corollary 1. Let C1 and C2 be defined as in (2). Suppose Assumptions 3 and 4 hold. Let c1
and c2 be defined as in (10). If a ∈ Ln, then (16) holds.

Proof. The result follows from Theorem 3 after observing that conditions (11) and (12) are
trivially satisfied for any c1 and c2 when a ∈ Ln.

The case of a split disjunction is particularly relevant in the solution of mixed-integer second-
order cone programs, and it has been studied by several groups recently, in particular Dadush
et al. [10], Andersen and Jensen [1], Belotti et al. [4], and Modaresi et al. [16]. Theorem 3 has
the following consequence for a split disjunction.

Corollary 2. Consider C1 and C2 defined by a split disjunction on C as in (2). Suppose
Assumptions 3 and 4 hold. Let c1 and c2 be defined as in (10). Then (16) holds.
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Proof. Let l>1 x ≥ l1,0 ∨ l>2 x ≥ l2,0 define a split disjunction on C with l2 = −tl1 for some t > 0.
Then we have tl1,0 > −l2,0 so that C1 ∪ C2 6= C. Let λ1, λ2, c1, and c2 be defined as in (10).
Let θ2 := 1

λ2(tl1,0+l2,0)
and θ1 := tλ2θ2

λ1
. Then

a+ θ1c1 + θ2c2 = a+ λ2θ2(t(l1 − l1,0a) + (l2 − l2,0a)) = 0 ∈ Ln.

The result now follows from Theorem 3 after observing that θ1, θ2 ≥ 0 implies that conditions
(11) and (12) are satisfied.

When the sets C1 and C2 do not intersect, except possibly on their boundary, Proposition 1
says that (5) can be expressed in conic quadratic form and directly implies the following result.

Corollary 3. Let C1 and C2 be defined as in (2). Suppose Assumptions 3 and 4 hold. Let c1
and c2 be defined as in (10). Suppose that one of the conditions a), b), or c) of Theorem 3 holds.
Suppose, in addition, that

{x ∈ C : c>1 x > 0, c>2 x > 0} = ∅.

Then

conv(C1 ∪ C2) = {x ∈ C : x satisfies (6)}
= {x ∈ C : x satisfies (7)}.

Remark 4. Conditions (11) and (12) are directly related to the sufficient conditions that guar-
antee the closedness of the convex hull of a two-term disjunction on Ln explored in [14]. In
particular, one can show that the convex hull of a disjunction h>1 x ≥ h1,0 ∨ h>2 x ≥ h2,0 on the
whole second-order cone Ln is closed if

i) h1,0 = h2,0 ∈ {±1} and there exists 0 < µ < 1 such that µh1 + (1− µ)h2 ∈ Ln, or

ii) h1,0 = h2,0 = −1 and h1, h2 ∈ − intLn.

In our present context, exploiting (i) and (ii) after letting hi := a + θici and hi,0 := 1 (or,
hi := −a+ θici and hi,0 := −1) for some θi > 0 leads to (11) and (12).

4.2 Two Examples

In this section we illustrate Theorem 3 with two examples.

4.2.1 A Two-Term Disjunction on a Paraboloid

Consider the disjunction −2x1 − x2 − 2x4 ≥ 0 ∨ x1 ≥ 0 on the paraboloid C := {x ∈ L4 :
x1 + x4 = 1}. Let C1 := {x ∈ C : −2x1 − x2 − 2x4 ≥ 0} and C2 := {x ∈ C : x1 ≥ 0}.
Noting that C is a paraboloid and C1 and C2 are disjoint, we can use Corollary 3 to characterize
conv(C1 ∪ C2) with a conic quadratic inequality:

conv(C1 ∪ C2) =
{
x ∈ C : 3x+ x1(−3;−1; 0; 2) ∈ L4

}
.

Figure 1 depicts the paraboloid C in mesh and the disjunction C1 ∪ C2 in blue. The conic
quadratic disjunctive cut added to convexify this set is shown in red.
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Figure 1: The disjunctive cut obtained from a two-term disjunction on a paraboloid.

4.2.2 A Two-Term Disjunction on a Hyperboloid

Consider the disjunction −2x1 − x2 ≥ 0 ∨
√

2x1 − x3 ≥ 0 on the hyperboloid C := {x ∈ L3 :
x1 = 2}. Let C1 := {x ∈ C : −2x1 − x2 ≥ 0} and C2 := {x ∈ C :

√
2x1 − x3 ≥ 0}. Note that,

in this setting,

a>r =
1

10
(1; 0; 0)>

(
−2
√

5 + 5
√

2;−
√

5;−5
)
< 0,

but none of the conditions (12) are satisfied. The conic quadratic inequality

(5 + 2
√

10)x+ (
√

2x1 − x3)
(
−2
√

5 + 5
√

2;−
√

5;−5
)
∈ L3 (18)

of Theorem 3 is valid for C1 ∪ C2 but not sufficient to describe its closed convex hull. Indeed,
the inequality x2 ≤ 2 is valid for conv(C1 ∪C2) but is not implied by (18). Figure 2 depicts the
hyperboloid C in mesh and the disjunction C1 ∪C2 in blue. The conic quadratic disjunctive cut
(18) is shown in red.
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[8] S. Burer and F. Kılınç-Karzan. How to convexify the intersection of a second-order cone
with a non-convex quadratic. Working paper, June 2014.
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