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Abstract In this paper we consider the infinite relaxation of the corner poly-
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1 Introduction

For simplicity consider a pure IP set

Ay = b (IP)

y ≥ 0, y ∈ Z
d.
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Rewriting this set in tableaux form with respect to a basis B (i.e., pre-
multiplying the system by B−1) we obtain the equivalent system

yB = b̄− N̄yN (IP’)

y ≥ 0, y ∈ Z
d.

In [9] Gomory introduced the corner polyhedron, which relaxes the non-
negativity constraints for the basic variables yB . This relaxation can be con-
veniently written in the following form:

f +

n
∑

j=1

rjsj ∈ Z
m (CP)

s ∈ Z
n, s ≥ 0.

The corner polyhedron has been extensively studied in the literature specially
in the restricted case m = 1 and some interesting results regarding its facial
structure are known (see Shim and Johnson [14] for example). Unfortunately,
the structure of this IP still heavily relies on the specific choice of rj ’s, making
it difficult to analyze it.

For interest of tractability, further relaxations of (CP) were proposed, and
in particular two have received significant attention of the IP community: the
Andersen et al. relaxation [1] (which removes the integrality constraint of the
s-variables) and the infinite relaxation [10]. We focus on the latter relaxation,
which is a direct way of reducing the complexity/asymmetry of the system by
introducing all possible rays rj ’s:

f +
∑

r∈Rm

rsr ∈ Z
m (IR)

sr ∈ Z+ for all r ∈ R
m

s has finite support.

Note that s is now formally a function s : Rm → Z+, hence imposing that s
has finite support has the standard meaning that sr 6= 0 for only finitely many
r’s. Observe that the set (IR) is completely specified by the choice of f .

Given that (IR) is a relaxation of (CP), some of the valid cuts for the latter
may not be valid for the former. Interestingly, many of the important families
of cuts for (CP) are actually valid for (IR): Gomory Mixed Integer cuts, and
more generally Split cuts, are prominent examples.

We now briefly recall important definitions and results regarding the infi-
nite relaxation; see [3] for a more detailed discussion.

Valid functions. Assume f /∈ Z
m. We start by defining the analog of a ‘cut’ for

the infinite relaxation. Let Gf denote the set of feasible solutions to (IR). We
say that a function π : Rm → R is valid for (IR) if π ≥ 0 and the inequality

∑

r∈Rm

π(r)sr ≥ 1 (1)
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is satisfied by every s ∈ Gf .
The relevance of the above definition rests on the fact that any valid func-

tion yields a valid inequality for the original integer program (IP) by restricting
the inequality to the space rj .

As pointed out in [3], the non-negativity assumption in the definition of
valid function might seem artificial at first. If we removed this assumption,
there would actually exist ‘valid’ functions taking negative values. However,
any valid function must be nonnegative over rational vectors. Since data in
mixed integer linear programs are usually rational and valid functions must be
nonnegative over rational vectors, it is natural to focus on nonnegative valid
functions. This is the approach that we adopt in this section.

Minimal functions, extreme functions and facets. Given the relationship to
valid inequalities for (IP), the general goal is to understand valid functions
for (IR). However, at this point they are again too general to have a useful
structure. The first way of restricting the set of functions is by studying only
those which are minimal. A valid function π is minimal if there is no valid
function π′ 6= π such that π′(r) ≤ π(r) for all r ∈ R

m. These are the only
valid functions that we need to consider, since for every valid function there
is a minimal one which dominates it. Gomory and Johnson give a simple
characterization of minimal valid functions using the following concepts.

A function π : Rm → R is periodic if π(x) = π(x+w) for all x ∈ [0, 1]m and
w ∈ Z

m. Also, π is said to satisfy the symmetry condition if π(r)+π(−f−r) =
1 for all r ∈ R

m. Finally, π is subadditive if π(a+ b) ≤ π(a) + π(b).

Theorem 1 (Gomory and Johnson [10]) Let π : R
m → R be a non-

negative function. Then π is a minimal valid function for (IR) if and only if
π(0) = 0, π is periodic, subadditive and satisfies the symmetry condition.

Although minimality helps reducing the number of relevant valid functions
that we need to study, it still leaves too many under consideration. Inspired by
the importance of facets in the finite dimensional setting, there are two anal-
ogous concepts in the infinite dimensional setting. A valid function is extreme
if it cannot be written as a convex combination of two other valid functions.
For the other concept, given a valid function π first define S(π) as the set of
all s satisfying (IR) which are tight for π, namely

∑

r∈Rm π(r)sr = 1. A valid
function π is then a facet of (IR) if for every other valid function θ 6= π, we
have S(π) 6⊆ S(θ). This later concept was introduced by Gomory and John-
son in [12] and it is not difficult to see that every facet is extreme (proof in
Appendix B.1).

Lemma 1 If π is a facet, then π is extreme.

In general, constructing or even proving that a valid function is extreme
or a facet can be a very difficult task. Arguably the deepest result on the
infinite relaxation is a sufficient condition for extremality in the restricted
setting m = 1, the so-called 2-Slope Theorem of Gomory and Johnson [11].
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In addition to its theoretical appeal, this result also has practical relevance.
Indeed the simplest 2-slope functions give rise to Gomory’s mixed integer cuts,
which are currently the most effective cuts in integer programming solvers [2].

Theorem 2 (Gomory-Johnson 2-Slope Theorem) Let π : R → R be a
minimal valid function. If π is a continuous piecewise linear function with only
two slopes, then π is extreme.

This surprising result was already known in the 70’s, and despite the in-
creased efforts in understanding relaxations for (IP) with m > 1 no general-
ization or related result for this case seems to be known; this was posed as an
open question by Gomory and Johnson in [12].

Our results. We show that a suitable generalization of the 2-Slope Theorem
holds for m = 2 (required definitions are presented in the next section).

Theorem 3 (3-Slope Theorem) Let π : R2 → R be a minimal valid func-
tion. If π is a continuous 3-slope function with 3 directions, then π is a facet.

We remark that the extra condition about the 3 directions of π is required
as shown in Section 6.

As an application, our theorem implies that the 3-slope construction of Dey
and Richard [7] gives facets, highlighting the properties which are driving this
result. We remark that new facets can be derived using the 3-slope functions
satisfying the hypotheses of our theorem, for instance via automorphisms [7]
or via the sequential-merge procedure introduced by Dey and Richard in [6].
Another observation is that, just as 2-slope functions seem to be the most
important extreme functions in the 1-dimensional case, 3-slope functions with
3 directions seem to be important in the 2-dimensional case. In particular Dey
and Wolsey [8] characterized the minimal valid functions of the Andersen et
al. 2-row relaxation that have a unique lifting in the infinite relaxation (IR):
these minimal functions arise from splits, whose lifting are 2-slope functions
(they satisfy the Gomory-Johnson theorem), and from so-called triangles of
Type 1 and Type 2, whose liftings are 3-slope functions with 3 directions (they
satisfy Theorem 3).

The high-level structure of the proof of Theorem 3 is similar to the proof of
the 2-Slope Theorem presented in [12]. Consider a valid function π : R2 → R

satisfying the assumptions of the theorem. We then consider a valid function θ
such that S(π) ⊆ S(θ) and our goal is to show that π = θ. In order to achieve
this, we write a system of equations which is satisfied by π and θ; the final
step is then to argue that this system has a unique solution, which gives the
desired equality.

One major departure from the proof of the 2-Slope Theorem is the way
the system is constructed: while Gomory and Johnson derived it directly from
the valid function at hand, our system can be seen as the ‘limit’ of systems
obtained for suitable approximations of π. In addition, proving that the con-
structed system has a unique solution is substantially more involved than in
the previous proof.
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2 Notation and Definitions

Throughout this text, we consider R2 endowed with the Euclidean metric and
standard inner product. For any subset U ⊆ R

2, we use U to denote its closure.
We say that a collection F of subsets of R2 is locally finite if every point in
R

2 has a neighborhood which intersects only finitely many sets in F .
For a subset S of R2, we say that a function π : S → R is affine if there is

a vector ∇ ⊆ R
2 and a scalar β such that π(x) = ∇ · x+ β. Notice that when

S has a non-empty interior ∇ is uniquely defined, hence we call it the gradient
of π.

A subset P ⊆ R
2 is a polygon if it satisfies the following properties: (i) P is

the union of a locally finite collection of convex polytopes; (ii) P has non-empty
and path-connected interior. Note that according to this definition polygons do
not need to be convex; in particular, it allows polygons with ‘holes’. Also note
that unbounded objects, such as splits [4], can also be polygons. However, this
definition excludes a single point as a polygon and every polygon is a closed
set. As a final remark, we point out that property (ii) in the definition is not
actually required in this paper; we add it in order to obtain a more intuitive
meaning of polygons.

3-Slope functions. In this part we formally define what we mean for a function
π : R2 → R to be 3-slope. The definition is given in general terms since some
of the notions introduced here will be useful in the proofs.

Fig. 1 Example of a 3-partition {Pi}
3
i=1. Polygons of the same color belong to the same

part Pi.

A collection of polygons P is a tiling of a region R ⊆ R
2 if R = ∪P∈PP and

the interiors of the polygons in P are pairwise disjoint. Given a locally finite
tiling P of R2, a partition of P into 3 non-empty subsets {Pi}

3
i=1 is called a

(polygonal) 3-partition.
Consider a function π : R

2 → R and let D denote the points in R
2

where π is differentiable. We define the equivalence relation ∼ over D2 ac-
cording to their gradients: x ∼ y iff ∇π(x) = ∇π(y). Then let {Di}i∈I be
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the collection of equivalence classes of D with respect to ∼ and let Pπ
i con-

tain the closure of the path-connected components of Di, i.e. Pπ
i = {P :

P is a path-connected component of Di}. Finally, we reach the definition of a
3-slope function.

Definition 1 We say that π : R2 → R is a 3-slope function if it is continuous
and {Pπ

i }i∈I is a 3-partition.

1

11− f0

a) b)

Fig. 2 Example of a 3-slope function and its 3-partition. a) Function π defined in (9), with
its projection on x depicted in the interval [0, 1]. b) The 3-partition {Pπ

i }
3
i=1 formed by

‘splits’; polygons of the same color belong to the same part Pπ
i .

For a 3-slope function π, we use the shorthand {Pπ
i }

3
i=1 to denote {Pπ

i }i∈I

and Pπ =
⋃3

i=1
Pπ
i . We define∇iπ to be the gradient of the points in

⋃

P∈Pπ
i
P

where π is differentiable. Notice that ∇iπ is the gradient of the restriction π|P
for P ∈ Pπ

i .
A useful concept when testing if a function is 3-slope is that of compati-

bility. We say that a function θ is compatible with a 3-partition {Pi}
3
i=1 if :

(i) for all P ∈
⋃3

i=1
Pi the restriction θ|P is affine and; (ii) for i = 1, 2, 3 and

for all P, P ′ ∈ Pi the restrictions θ|P and θ|P ′ have the same gradient. In this
context, we define ∇iθ as the gradient of the points in

⋃

P∈Pi
P where θ is

differentiable.
We say that θ is compatible with a 3-slope function π if θ is compatible

with {Pπ
i }

3
i=1. Note that π is itself compatible with {Pπ

i }
3
i=1.

Segments and boundary directions. Consider a 3-partition {Pi}
3
i=1. A segment

of the 3-partition is a line segment S ⊆ R
2 of non-zero length that belongs

to the boundary of a polygon P ∈
⋃3

i=1
Pi. A vector d in the unit circle S1

is a direction of a polygon P if the boundary of P contains a line segment S
with endpoints a 6= b such that d is a scaling of a − b. We identify antipodal
points in S1 so that d and −d are considered the same direction; for example,
a square has only 2 directions. Similarly, d is a direction of {Pi}

3
i=1 if it is

the direction of a polygon in
⋃3

i=1
Pi. Finally, d is a direction of π if it is a

direction of {Pπ
i }

3
i=1.
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Integration along lines. Consider a 3-slope function π, a point u ∈ R
2 and

a vector v ∈ R
2 \ {0}. Intuitively, π(u + v) is obtained by integrating the

‘gradient’ of π from u to u+v; essentially, π(u+v) = π(u)+
∑

i µi(u, v)∇
iπ ·v

where µi(u, v) is the proportion of points with gradient ∇iπ in the segment
connecting u and u + v. Our main goal in this part is to make the above
statement formal, we defer proofs to Section A in the appendix.

Fix a 3-slope function π and u ∈ R
2. Given v ∈ R

2 \ {0}, let L(u, v)
denote the line segment connecting u and u+ v. Consider a polygon P ∈ Pπ

and define IP to be the set of line segments of non-zero length obtained by
intersecting P and L(u, v). Since P is obtained by a union of locally finite
polyhedra, only finitely many of them intersect the compact set L(u, v) and
hence IP is finite. Define I ′ =

⋃

P∈Pπ IP . Again notice that I ′ is finite since
Pπ is locally finite and L(u, v) is compact, and therefore only finitely many
polygons in Pπ intersect L(u, v).

We note that the line segments in I ′ may overlap in more than one point. In
order to rectify this, we consider the ‘shattering’ of these segments: we define
I as the collection of all maximal line segments S such that for all I ∈ I ′

either S ⊆ I or S intersects I in at most one point. Now I is a collection of
segments that cover L(u, v) and pairwise intersect in at most one point.

Finally, we partition the segments in I into 3 families according to the
original 3-partition: I1 = {I ∈ I : I ⊆

⋃

P∈Pπ
1
P}, I2 = {I ∈ I \ I1 : I ⊆

⋃

P∈Pπ
2
P} and I3 = {I ∈ I \ (I1 ∪ I2) : I ⊆

⋃

P∈Pπ
3
P}.

Now we define µi(u, v) as the fraction of L(u, v) which lies in the segments
Ii:

µi(u, v) =

∑

I∈Ii
µ(I)

|v|
,

where µ(I) for a line segment I ⊆ R
2 with endpoints a, b is the length |a− b|.

The following property motivates the careful definition of these structures.

Lemma 2
∑3

i=1
µi(u, v) = 1.

We finally present the most important property of this section.

Lemma 3 π(u+ v) = π(u) +
∑3

i=1
µi(u, v)∇

iπ · v.

3 Structural Properties of 3-Partitions and 3-Slope Functions

Let π : R2 → R be a 3-slope function. Although the 3-partition {Pπ
i }

3
i=1 looks

arbitrary at first, it actually exhibits a great deal of structure. In this section
we present lemmas which capture some of these properties.

Consider a 3-partition {Pi}
3
i=1. Let S be a segment in this 3-partition and

d be the direction of S. Since the 3-partition is a locally finite tiling of R2,
there are sets P, P ′ ∈

⋃3

i=1
Pi such that S ∩ (P ∩P ′) is a segment of non-zero

length. We then associate the pair {i, j} to the direction d. Note that many
pairs may be associated to the same direction and that the same pair may be
associated to different directions. Note also that pairs {i, i} are allowed.
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S

1 2

3

Fig. 3 Association of pairs {i, j} and directions d. The 3-partition {Pi}
3
i=1 has 2 directions:

(0, 1) and (1, 0). A segment S with direction (0, 1) is depicted in bold. The pairs {1, 2} and
{2, 3} are associated to direction (0, 1), and the pair {1, 3} is associated to (1, 0).

The importance of this association is given by the following simple lemma
which allows us to relate the different gradients of a function.

Lemma 4 Consider a 3-partition {Pi}
3
i=1 and a function θ : R2 → R compat-

ible with this 3-partition. If d is a direction of {Pi}
3
i=1 and {i, j} is associated

to d, then ∇iθ · d = ∇jθ · d.

Proof Consider P ∈ Pi, P
′ ∈ Pj such that P ∩ P ′ contains a non-degenerate

segment S with direction d. To simplify the notation, define θi = θ|P and
θj = θ|P ′ . Since θi is affine, it is of the form θi(x) = ∇θi ·x+βi = ∇iθ ·x+βi,
and similar for θj .

Let a, b be the endpoints of the line segment S. Then θi(b)−θi(a) = ∇iθ·(b−
a) = ∇iθ ·λd, for some λ 6= 0. Similarly, we obtain that θj(b)−θj(a) = ∇jθ ·λd.
Since θi(a) = θj(a) = θ(a) and θi(b) = θj(b) = θ(b), we have ∇iθ · d = ∇jθ · d
and the result follows.

We start analyzing the structure of the association of directions and pairs.
The following lemma follows directly from the definition of {Pπ

i }
3
i=1.

Lemma 5 Consider a 3-slope function π. If the pair {i, j} is associated to a
direction of π then ∇iπ 6= ∇jπ. In particular, i 6= j.

Consider Figure 3. Notice that there is no 3-slope function π such that the
3-partition depicted equals {Pπ

i }
3
i=1: since {1, 2} and {2, 3} are associated to

the direction (0, 1) and {1, 3} is associated to (1, 0), from Lemma 4 we get
that ∇1π · (0, 1) = ∇2π · (0, 1) = ∇3π · (0, 1) and ∇1π · (1, 0) = ∇3π · (1, 0); this
implies that ∇1π = ∇3π, contradicting the previous lemma. The next lemma
captures the heart of this argument and will be extremely useful in proving
properties of 3-partitions.

Lemma 6 Consider a 3-slope function π and let D denote the set of directions
of π. If |D| > 1 then there is an injection ζ : D → {{i, j} : i 6= j, 1 ≤ i, j ≤ 3}
such that ζ(d) is the only pair associated to the direction d.

Proof First we show that we cannot have a pair {i, j} associated to more than
one direction. Suppose that {i, j} is associated to two distinct directions d1
and d2. The vectors d1 and d2 are linearly independent and, by Lemma 4,
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∇iπ · d1 = ∇jπ · d1 and ∇iπ · d2 = ∇jπ · d2. Lemma 15 then implies that
∇iπ = ∇jπ, contradicting Lemma 5.

Now we show that only one pair is associated to a direction. Take a direc-
tion d1 and suppose by contradiction that two distinct pairs {i, j} and {i′, j′}
are associated to d1. Again i 6= j and i′ 6= j′ by Lemma 5, and by the pigeon-
hole principle two of these four indices are the same. Without loss of generality
assume i = i′. Consider a direction d2 different from d1. There is a pair asso-
ciated to d2, and from the previous paragraph we get that this pair must be
{j, j′}. But again ∇jπ · d1 = ∇iπ · d1 = ∇j′π · d1 and ∇jπ · d2 = ∇j′π · d2,
implying that ∇jπ = ∇j′π by Lemma 15. This contradicts Lemma 5.

Obviously, Lemma 6 implies that |D| ≤ 3. In fact, the following holds.

Corollary 1 Consider a 3-slope function π and let D denote the set of direc-
tions of π. Then |D| = 1 or 3.

Proof Lemma 6 implies that |D| ≤ 3. Suppose |D| = 2. Consider a point
x ∈ R

2 where two distinct boundary directions meet (see Figure 4). Since
we only have two possible boundary directions, considering a small enough
neighborhood around x, we see that the number of possible polygons in Pπ

containing x is 2, 3 or 4. In the first case, injectivity of Lemma 6 is violated (two
different directions are associated with the same pair {i, j}), a contradiction. In
the second case, two different pairs are associated with one of the directions,
again contradicting Lemma 6. In the third case, exactly 4 polygons of Pπ

contain x. Two of these polygons belong to the same family Pπ
i for some

i = 1, 2, 3. But then two different directions are associated with the same pair
{i, j}, again contradicting Lemma 6.

1)

x

2) 3)

1

2

1

2

3

1

2

1

3

Fig. 4 Cases in the proof of Corollary 1. 1) {1, 2} is associated to both directions. 2) {1, 2}
and {2, 3} are associated to the same direction. 3) {1, 3} is associated to both directions. We
note that we cannot exchange the color of the right and bottom polygons due to Lemma 5.

Another corollary of Lemma 6 is that the polygons in Pπ
i have at most 2

directions, and that these directions are the same across all of these polygons.

Corollary 2 Consider a 3-slope function π. Fix i ∈ {1, 2, 3} and let D be the
set of direction d such that there is a polygon in Pπ

i with direction d. Then
|D| ≤ 2.
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Proof By contradiction suppose not. Then there are three distinct directions
associated to pairs of the form {i, j}, where i is fixed and j 6= i belongs to
{1, 2, 3}. By the pigeon-hole principle we have two directions d, d′ associated
to the same pair, which contradicts Lemma 6.

Before moving on, we need to make formal an intuitive observation about
periodic 3-slope functions.

Lemma 7 Consider a periodic 3-slope function π. Fix i ∈ {1, 2, 3}. Then for
every P ∈ Pπ

i and w ∈ Z
2, the polygon w+P is contained in a polygon in Pπ

i .

Proof Fix i ∈ {1, 2, 3}, consider P ∈ Pπ
i and w ∈ Z

2. Let Di ⊆ R
2 denote

the points where π is differentiable and has gradient equal to ∇iπ. Using the
definition of Pπ

i , let S be a path-connected component of Di such that P = S.
By periodicity of π, notice that w+S belongs to Di, and hence to a path-

connected component S′ of Di. By monotonicity and translation-invariance of
closure, we get that w + P = (w + S) ⊆ S′. Again using the definition of Pπ

i ,
we have that it contains S′ and the result follows.

Now we focus on 3-slope functions which are periodic, non-negative and
have 3 directions. Notice that the function of interest in the main Theorem 3
satisfies these properties.

Lemma 8 Consider a periodic 3-slope function π ≥ 0 with 3 directions. Then
R

2 is spanned by nonnegative combinations of the gradients {∇iπ}3i=1.

Proof Since π has 3 directions, the function ζ of Lemma 6 is a bijection. By
Lemma 5, at most one of the three gradients equals 0.

First we show that the three gradients cannot be collinear. By contra-
diction, suppose they are. As noted earlier, at least two of these vectors are
non-zero, say ∇2π, ∇3π. Since π has 3 directions, at least 2 of these directions
are not orthogonal to ∇iπ for i = 2, 3. One of these 2 directions, say d, is
associated with either {1, 2} or {1, 3}, say {1, 2}. Then employing Lemma 4
over the pair {1, 2} we obtain ∇1π · d = ∇2π · d, and since ∇2π · d 6= 0 and
∇1π,∇2π are collinear, this implies ∇1π = ∇2π, which contradicts Lemma 5.

Now suppose that R
2 is not spanned by non-negative combinations of

{∇iπ}3i=1. Since these three vectors are not collinear, this implies that there
is a vector d such that ∇iπ · d ≤ 0 for all i and ∇iπ · d < 0 for some i; without
loss of generality we assume ∇1π · d < 0. Intuitively, walking inside a polygon
in Pπ

1 along direction d keeps reducing the value of π. Hence, the high-level
idea is to use the periodicity of π to find b and λ such that µ1(b, λd) is large;
then using Lemma 3 we can contradict π ≥ 0.

So consider a polygon P in Pπ
1 , which has a non-empty interior. Let b

be a point in the interior of P , and consider a closed ball B centered at b
with radius r < 1/2 which is contained in P . Since r < 1/2, we have that
(w + B) ∩ (w′ + B) = ∅ for all w,w′ ∈ Z

2. Moreover, Lemma 7 implies that
for every w ∈ Z

2 the ball w+B centered at w+ b belongs to a polygon in Pπ
1 .
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Let α be a positive integer to be specified later. Using Lemma 19 repeat-
edly with increasing values for ℓ, take distinct points {wj}

α
j=1 in Z

2 and re-
als {λj}

α
j=1 such that |wj − λjd|∞ < r′

.
= r/2 for j ∈ {1, 2, . . . , α}. Let

λ = r+maxj λj and notice that the distance between wj and the line L(0, λd)
is at most r′. Translating this system by b, we obtain that the distance between
wj + b and the line L(b, λd) is at most r′, which implies that the ball wj +B
(centered at wj + b) intersects L(b, λd). Since we chose λ large enough, the
intersection (wj + B) ∩ L(b, λd) is actually a line segment, whose endpoints
we denote by uj and vj . As we chose r′ = r/2, we get that there exists ǫ > 0
independent of α such that µ([uj , vj ]) ≥ ǫ for all j ∈ {1, 2 . . . , α}. Since the
balls {wj +B}αj=1 are disjoint, this implies that µ1(b, λd) ≥ αǫ/λ|d|.

Using Lemma 3 we obtain that π(b + λd) ≤ π(b) + µ1(b, λd)∇
1π · λd ≤

π(b) + (αǫ/|d|)∇1π · d, where we used the fact that ∇iπ · d ≤ 0 for i = 1, 2, 3.
Since ∇1π · d < 0 and ǫ is independent of α, we can choose α large enough so
that π(b+ λd) < 0, contradicting that π ≥ 0. This concludes the proof.

Lemma 9 Consider a periodic 3-slope function π ≥ 0 with 3 directions and
satisfying π(0) = 0. Then for i = 1, 2, 3 there exists a polygon P 0

i ∈ Pπ
i that

contains the origin.

Proof The proof goes by contradiction. Without loss of generality1 assume
that 0 /∈

⋃

P∈Pπ
3
P . Then there is a ball B centered at the origin which does

not intersect
⋃

P∈Pπ
3
P : to see this, notice that by locally finiteness there is a

neighborhood of 0 which only intersects finitely many polygons in Pπ
3 ; all of

these have non-zero distance to the origin, so we can define the radius of B to
be smaller than the smallest of these distances.

From the previous lemma, ∇1π and ∇2π are linearly independent, so there
is a vector d such that ∇1π · d < 0 and ∇2π · d < 0. Now scale d such
that d ∈ B and notice that µ3(0, d) = 0. From Lemma 2 we obtain that
µ1(0, d) + µ2(0, d) = 1 and hence from Lemma 3 we get

π(d) = π(0) + µ1(0, d)∇
1π · d+ µ2(0, d)∇

1π · d < 0,

where the inequality follows since π(0) = 0. This contradicts the fact that
π ≥ 0 and completes the proof.

A parallelogram is a convex polygon with non-empty interior and with two
distinct boundary directions.

Lemma 10 Consider a periodic 3-slope function π ≥ 0 with 3 directions and
satisfying π(0) = 0. Fix i ∈ {1, 2, 3} and let P 0

i be given by the above lemma.
Then every P ∈ Pπ

i can be tiled with parallelograms in such a way that each
of these parallelograms can be translated to be entirely contained in P 0

i and to
contain the origin as a vertex. Moreover, this tiling is locally finite.

1 We remark that this is indeed the case even though the definition of µi is not symmetric.
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Proof Let D be the union of the set of direction of P 0
i and P . From Corollary

2 we have that |D| ≤ 2. Consider a parallelogram Q that contains the origin
as a vertex, is entirely contained in P 0

i , and whose boundary directions equal
D (in the case |D| = 2) or one of its boundary directions belongs to D (in the
case |D| = 1). Denote by 0, 0 + u, 0 + v and 0 + u+ v the vertices of Q. The
translates Q + (ku + hv) of Q with k, h ∈ Z give a locally finite tiling of the
plane. By intersecting this tiling of the plane with P , we obtain a tiling T of
P .

Since the set of boundary directions of P is contained in that of Q, the
polygons in the tiling T also have their set of boundary directions contained
in that of Q. Moreover, notice that each polygon in T is bounded and has only
finitely many vertices: the latter follows from the fact that, by locally finiteness,
only finitely many polyhedra which compose P intersect the compact set Q+
(ku + hv). Therefore, whenever a polygon in T is non-convex, tile it into
finitely many parallelograms homothetic to Q using lines with the direction
of the boundary directions of Q passing through the various vertices of the
polygon.

It then follows that the polygon P can be locally finitely tiled with par-
allelograms whose boundary directions are the same as in Q. Furthermore,
each of these parallelograms is of size no greater than Q. Therefore each can
be translated into a parallelogram that contains the origin as a vertex and is
entirely contained in P 0

i , which completes the proof.

a) b)

P 0

i

Q

P

Fig. 5 Illustration of the proof of Lemma 10. a) Polygon P 0
i , parallelogram Q and polygon

P . b) Tiling of P with parallelograms.

4 Uniqueness Theorem

The following theorem is the main piece in our argument for the 3-Slope The-
orem.

Theorem 4 (Uniqueness Theorem) Consider a point f ∈ R
2 \Z2 and a peri-

odic 3-slope function π ≥ 0 with 3 directions and satisfying: (i) π(0) = 0; (ii)
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π(w − f) = 1 for all w ∈ Z
2. Suppose that θ ≥ 0 is periodic, compatible with

π and satisfies conditions (i) and (ii). Then π = θ.

4.1 Proof of the Uniqueness Theorem

Let d1, d2 and d3 be the three distinct boundary directions of π. From Lemma
16 we can scale d1 and d2 and assume WLOG that −d3 = d1 + d2. For every
vector v ∈ R

2 we use v(1) and v(2) to denote the coordinates of v with respect
to the canonical basis {e1, e2}.

Let ζ be the injection (which in this case is a bijection) from Lemma 6
with respect to π. Relabel the gradients of π such that ζ(di) = {i, i⊕1} for all
i, where addition is done in a cyclic way: i⊕ 1 = i+ 1 for i < 3 and 3⊕ 1 = 1
(to simplify the notation we use the standard plus sign instead of ⊕ from now
on).

Before proceeding we give an informal idea of the proof strategy. Suppose
that di ∈ Z

2 − f (i.e. f + di ∈ Z
2) for i = 1, 2, 3. Condition (ii) then implies

that π(di) = θ(di) = 1 for i = 1, 2, 3. This leads to the consideration of the
the following system on variables x1, x2, x3 ∈ R

2:

xi · di = xi+1 · di i = 1, 2, 3 (2)

3
∑

j=1

µj(0, di)xj · di = 1 i = 1, 2, 3. (3)

Under the above assumption, the gradients of π and θ satisfy this system,
namely when setting xi = ∇iπ for all i or xi = ∇iθ for all i (via Lemmas 4
and 3). Moreover, using a basis transformation and Lemma 17, it is possible
to show that this system has a unique solution, which then implies that π = θ.
Writing the system for the boundary directions di, i = 1, 2, 3, is crucial for
this step: it imposes the required sign structure on the matrix of the system.

In general the di’s may not belong to Z
2 − f , hence the gradients of π and

θ may not satisfy equations (3). The idea is then to approximate (or perturb)
these equations to make the gradients feasible, while maintaining the property
that the system has a unique solution (see Lemma 21). More precisely, we use
Lemma 20 to find λ > 0 and for each i = 1, 2, 3 a vector vi ∈ Z

2 − f such that
|vi/λ− di|∞ ≈ 0. With these new vectors, the equations

3
∑

j=1

µj(0, v
i)xj ·

vi

λ
= 1 i = 1, 2, 3 (4)

are satisfied (without any assumptions on the di’s) by setting xi = λ∇iπ
for all i or setting xi = λ∇iθ for all i. However, to show that these equations
approximate (3) we need to get a better hold on µj , which introduces additional
technicalities. Now we proceed with the formal proof.

Using Lemma 20, consider a sequence {λn} of positive reals and for each i =
1, 2, 3 a sequence {vin} in Z

2−f such that limn→∞ λn = ∞ and limn→∞ |vin/λn−
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di|∞ = 0. For a vector v ∈ R
2 \ {0}, Lemma 2 guarantees that the vector

(µ1(0, v), µ2(0, v), µ3(0, v)) has ℓ1-norm 1. Then {(µ1(0, v
i
n), µ2(0, v

i
n), µ3(0, v

i
n))}n

lies in a compact subset of R3 and thus has a subsequence which converges
uniformly to a non-negative vector (µi

1, µ
i
2, µ

i
3), also of unit ℓ1-norm.

Now we do a basis change and write the system that we aim at approx-
imating. Let A be the invertible matrix such that Ad1 = e1 and Ad2 = e2.
Then consider the system

yi ·Adi = yi+1 ·Adi i = 1, 2, 3 (5)

3
∑

j=1

µi
jyj ·Adi = 1 i = 1, 2, 3. (6)

Notice that setting yi = ∇iπA−1 for all i or setting yi = ∇iθA−1 for all i
satisfies equations (5). From the definition of A we can write this system in
matrix notation as

















1 0 −1 0 0 0
0 0 0 1 0 −1
−1 −1 0 0 1 1
µ1
1 0 µ1

2 0 µ1
3 0

0 µ2
1 0 µ2

2 0 µ2
3

−µ3
1 −µ3

1 −µ3
2 −µ3

2 −µ3
3 −µ3

3

































y1(1)
y1(2)
y2(1)
y2(2)
y3(1)
y3(2)

















=

















0
0
0
1
1
1

















.

Let M be the matrix in the left hand side of the above system, let b be the vec-
tor in the right hand side and pack y = (y1(1), y1(2), y2(1), y2(2), y3(1), y3(2))
to obtain the equivalent system My = b. Since for i = 1, 2, 3 (µi

1, µ
i
2, µ

i
3) is

non-negative and has ℓ1 norm 1, M only has non-zero rows and Lemma 17
implies that the matrix [M |b] has full row rank.

The next lemma gives the desired approximation of equations (6).

Lemma 11 Fix ǫ > 0. Then there are vectors v1, v2, v3 ∈ Z
2−f and a positive

scalar λ such that for each i, j ∈ {1, 2, 3}, |µj(0, v
i)Avi

λ
− µi

jAdi|∞ < ǫ.

Proof In hindsight fix ǫ′ such that ǫ′(ǫ′+|Adi|∞+µi
j) < ǫ for all i, j ∈ {1, 2, 3}.

Recall that limn→∞ λn = ∞, limn→∞ |vin/λn−di|∞ = 0 and limn→∞,n∈I maxj=1,...,3 |µj(0, v
i
n)−

µi
j | = 0 hold for all i = 1, 2, 3 (where I ⊆ N). Moreover, since A is a linear

(and hence continuous) transformation we have limn→∞ |Avin/λn−Adi|∞ = 0.
Thus, take n ∈ I large enough and define vi = vin and λ = λn such that: (i)
|Avi/λ − Adi|∞ < ǫ′ for all i ∈ {1, 2, 3} and (ii) |µj(0, v

i
n) − µi

j | < ǫ′ for all
i, j ∈ {1, 2, 3}.
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We show that |µj(0, v
i)Avi

λ
−µi

jAdi|∞ < ǫ. Using subadditivity and positive
homogeneity of norms we obtain

∣

∣

∣

∣

µj(0, v
i)
Avi

λ
− µi

jAdi

∣

∣

∣

∣

∞

≤

∣

∣

∣

∣

µj(0, v
i)
Avi

λ
− µi

j

Avi

λ

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

µi
j

Avi

λi
− µi

jAdi

∣

∣

∣

∣

∞

= |µj(0, v
i)− µi

j |

∣

∣

∣

∣

Avi

λ

∣

∣

∣

∣

∞

+ µi
j

∣

∣

∣

∣

Avi

λ
−Adi

∣

∣

∣

∣

∞

≤ |µj(0, v
i)− µi

j |

(∣

∣

∣

∣

Avi

λ
−Adi

∣

∣

∣

∣

∞

+ |Adi|∞

)

+ µi
j

∣

∣

∣

∣

Avi

λ
−Adi

∣

∣

∣

∣

∞

< ǫ,

where the last inequality follows from the definition of ǫ′. This concludes the
proof of the lemma.

According to Lemma 21, there exists ǫ > 0 such that every matrix [M ′|b′]
satisfying |[M ′|b′] − [M |b]|max < ǫ has full row rank. So consider such ǫ and
let v1, v2, v3 and λ be as in the previous claim. Then our perturbed system is
given by

yi ·Adi = yi+1 ·Adi i = 1, 2, 3 (7)

3
∑

j=1

µj(0, vi)yj ·
Avi

λ
= 1 i = 1, 2, 3, (8)

which now has yi = λ∇iπA−1 and yi = λ∇iθA−1 as feasible solutions. If
M ′x = b is the matrix form of the above system, it follows from the definition
of λ and the vi’s that |[M ′|b] − [M |b]|max < ǫ. Thus [M ′|b] has full row rank.
Since M ′x = b has a solution, this implies that it has a unique solution. Since
λA−1 is invertible we have that ∇iπ = ∇iθ for i = 1, 2, 3 as desired. This
implies that π = θ and thus concludes the proof of Theorem 4.

5 The 3-Slope Theorem

In order to prove the 3-Slope Theorem we need two results from the literature.

Lemma 12 (Interval Lemma [7]) Let U and V be closed sets in R
2. Let g

be a real-valued function over U , V and U + V . Assume that

1. U has a non-empty interior and, for all u ∈ U , the line segment [0, u] ⊆ U .
2. V is path-connected.
3. g(u) + g(v) = g(u+ v) for all u ∈ U , v ∈ V .
4. For all S ⊆ U with |S| ≤ 3 and

∑

u∈S u ∈ U , g satisfies
∑

u∈S g(u) =
g(
∑

u∈S u).
5. g(u) ≥ 0 for all u ∈ U .

Then the functions g|U , g|V and g|U+V are affine with the same gradient.
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For a function π : R
m → R, let E(π) ⊆ R

m × R
m denote the set of

all possible pairs (r1, r2) which satisfy π(r1) + π(r2) = π(r1 + r2). The next
theorem is a strengthening of the Facet Theorem proved in [12], which connects
the equality sets S(.) and E(.). Unlike in the original theorem, here we present
a version where the required condition only needs to hold for minimal valid
functions. Its proof is very similar to the original one, but for completeness we
present it in Appendix B.2.

Theorem 5 (Facet Theorem) Let π be a minimal valid function. Suppose
that for every other minimal function θ 6= π we have E(π) 6⊆ E(θ). Then π is
a facet.

5.1 Proof of Theorem 3

Recall that π : R2 → R is a minimal valid function which is also continuous, 3-
slope and has 3 boundary directions. In light of Theorem 5, consider a minimal
valid function θ such that E(π) ⊆ E(θ); we prove that θ = π using the
Uniqueness Theorem.

Since θ is minimal, Theorem 1 implies that θ(0) = 0 and also that θ(w −
f) = 1 for all w ∈ Z

2: from the symmetry condition we have θ(0)+ θ(−f) = 1
and hence θ(−f) = 1, so the observation follows from the periodicity of θ. In
order to apply the Uniqueness Theorem, we need to show that θ is compatible
with π. Motivated be Lemma 18 we start with the following lemma.

Lemma 13 Consider i ∈ {1, 2, 3} and P ∈ Pπ
i . Also consider the tiling of P

given in Lemma 10. Let Q be a parallelogram in this tiling and let y be such
that Q + y contains the origin as a vertex and is contained in P 0

i . Then θ|Q
and θ|Q+y are affine with the same gradient.

Proof We employ the Interval Lemma with U = Q+ y, V = {−y} and g = θ.
First, recall that by definition of a parallelogram, U has a non-empty interior.
Furthermore it contains the origin and is convex, and hence for all u ∈ U , the
line segment [0, u] is contained in U . Moreover, V is trivially path-connected
and θ ≥ 0; thus we satisfy Conditions 1, 2 and 5 in the Interval Lemma.

Now we consider Condition 3. The definitions of U and V imply that
U ⊆ P 0

i and V,U + V ⊆ P ∈ Pi. Then π|U is affine (in fact linear) with
gradient ∇iπ and (since 0 ∈ U) we have π(x) = π(0) +∇iπ · x for all x ∈ U ;
similarly, π(−y + x) = π(−y) +∇iπ · x for all x ∈ U . Recalling that π(0) = 0
and combining the previous equations gives π(−y + x) = π(−y) + π(x). Since
E(π) ⊆ E(θ), we get that θ(−y + x) = θ(−y) + θ(x) for all x ∈ U , hence
Condition 3 is satisfied.

For Condition 4, first suppose that S = {u1, u2} with u1, u2, u1 + u2 ∈ U .
Using the fact that π|U is linear, we get that π(u1) + π(u2) = π(u1 + u2)
and again θ(u1) + θ(u2) = θ(u1 + u2) as desired. Now suppose that S =
{u1, u2, u3} with u1, u2, u3, u1+u2+u3 ∈ U . We claim that u1+u2 ∈ U . Notice
that, since U is a parallelogram containing the origin as a vertex, there is an
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invertible linear transformation ρ : R2 → R
2 such that ρ(Q) = [0, 1]2. Then

ρ(ui) ∈ [0, 1]2 for i = 1, 2, 3 and ρ(u1 + u2 + u3) ∈ [0, 1]2. Because ρ is linear,
ρ(u1+u2) = ρ(u1)+ρ(u2) ≥ 0. Also, ρ(u1+u2)+ρ(u3) = ρ(u1+u2+u3) ≤ 1,
so the non-negativity of ρ(u3) implies ρ(u1 + u2) ≤ 1. Applying the inverse,
we get that u1 + u2 ∈ U as claimed. So from the previous part of this item,
θ(u1 + u2) = θ(u1) + θ(u2). Applying it again, we get θ((u1 + u2) + u3) =
θ(u1 + u2) + θ(u3) = θ(u1) + θ(u2) + θ(u3), thus Condition 4 holds.

Therefore, we can apply the Interval Lemma with U = Q + y, V = {−y}
and g = θ to obtain the result.

Now fix i ∈ {1, 2, 3}. Consider P ∈ Pπ
i ; since P is path-connected and its

tiling given in Lemma 10 is locally finite, combining the previous lemma with
Lemma 18 gives that θ|P is affine; in particular θ|P 0

i
is affine. But again em-

ploying the previous lemma we get that θ|P and θ|P 0
i
have the same gradient:

take a parallelogram Q in the tiling of P with Q + y ⊆ P 0
i , so θ|P and θ|Q

have the same gradient (since P ⊆ Q), θ|P 0
i
and θ|Q+y have the same gradient

(for the same reason) and θ|Q and θ|Q+y have the same gradient. Since P 0
i is

independent of P , this shows that the restriction of θ to every polygon in Pπ
i

is affine with the same gradient.
This argument shows that θ is compatible with π. Thus, we can now employ

the Uniqueness Theorem to obtain that π = θ as desired. This concludes the
proof of the theorem.

6 Tightness and Counterexamples

Consider a 3-slope function π and let D denote the set of directions of π. By
Corollary 1, we can only have |D| = 1 or 3. We prove in this section that our
assumption in Theorem 3 that |D| = 3 is necessary. In other words, Theorem 3
does not hold when |D| = 1.

Theorem 6 The condition that π has 3 boundary directions is necessary in
the statement of Theorem 3.

Proof Consider the periodic function π : R2 → R defined as follows on [0, 1]2

and elsewhere by periodicity (see Figure 2):

π(x, y) =















8

3
x for 0 ≤ x ≤ 1

4

1− 4

3
x for 1

4
≤ x ≤ 1

2

−1 + 8

3
x for 1

2
≤ x ≤ 3

4

4− 4x for 3

4
≤ x ≤ 1

(9)

The function π is a 3-slope function with gradients ( 8
3
, 0), (− 4

3
, 0), (−4, 0). Note

that all the boundary segments are parallel to the line x = 0, and therefore
|D| = 1.

However, π is a valid function for (IR) (with f = 1/4) which is not extreme
(and hence by Lemma 1 also not a facet), since it is the convex combination



18 Gérard Cornuéjols, Marco Molinaro

of the two valid functions below. These functions are extensions to 2-d of the
classical Gomory function and its 2-cut variant [5].

π1(x, y) =

{

4

3
x for 0 ≤ x ≤ 3

4

4− 4x for 3

4
≤ x ≤ 1

and π2(x, y) =















4x for 0 ≤ x ≤ 1

4

2− 4x for 1

4
≤ x ≤ 1

2

−2 + 4x for 1

2
≤ x ≤ 3

4

4− 4x for 3

4
≤ x ≤ 1

Since π = 1

2
π1 +

1

2
π2, this concludes the proof of the theorem.

Regarding 4-slope functions, it is possible to construct continuous 4-slope
functions that are not extreme. For example

π(x, y) =















x+ y for 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1

2

1− x+ y for 1

2
≤ x ≤ 1, 0 ≤ y ≤ 1

2

1 + x− y for 0 ≤ x ≤ 1

2
, 1

2
≤ y ≤ 1

2− x− y for 1

2
≤ x ≤ 1, 1

2
≤ y ≤ 1

is a convex combination of the valid Gomory functions (extended to 2-d)

π1(x, y) =

{

2x for 0 ≤ x ≤ 1

2

2− 2x for 1

2
≤ x ≤ 1

and π2(x, y) =

{

2y for 0 ≤ y ≤ 1

2

2− 2y for 1

2
≤ y ≤ 1

.

This indicates that in order to extend Theorem 3 to 4-slope functions, one
might have to impose stricter conditions on the boundary directions. Although
we are not aware of any explicitly stated 2-d facet which is continuous, 4-slope
and with |D| > 1, it seems that such facets can be constructed, for instance,
using the sequential-merge procedure of Dey and Richard [6].

7 Conclusions

In this work we present an extension of the 2-Slope Theorem for the infinite
relaxation of the corner polyhedron with 2 rows. Departing from the case
m = 1, this reveals a geometric condition (the number of boundary directions)
different than the number of slopes which influences the faciality of a valid
function.

The most direct open problem is to obtain similar sufficient conditions for
faciality for the case m > 2. The main difficulty in extending our proof lies
in finding an analogous of the system (5)-(6). Another important direction is
to better understand how to leverage this condition for faciality in order to
generate stronger cutting planes.
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A Proofs for Section 2

Our goal is to prove Lemmas 2 and 3. Recall the notation from Section 2.
Notice that the segments in

⋃3
i=1 Ii form a cover of L(u, v) and that their pairwise

intersection consists of at most one point. Thus, there are points {tj}
k
j=1 in L(u, v) with

t1 = u, tk = u+ v, tj+1 = tj + λjv with λj ≥ 0 and such that
⋃3

i=1 Ii equals the collection
of line segments [tj , tj+1].

Proof of Lemma 2: First,
∑3

i=1 µi(u, v) = (
∑

I∈
⋃

3
i=1

Ii
µ(I))/|v|. Using collinearity, |v| =

|tk−t1| =
∑k−1

j=1 |tj+1−tj | =
∑k−1

j=1 µ([tj , tj+1]) =
∑

I∈
⋃

3
i=1

Ii
µ(I), and the result follows.

�

Proof of Lemma 3: Consider a segment [tj , tj+1] which belongs to Ii. By definition this
segment belongs to a polygon P in Pπ

i . The truncation π|P is an affine function with gradient
∇iπ; thus, π(tj+1) = π(tj) +∇iπ · (tj+1 − tj) = π(tj) +∇iπ · vµ([tj , tj+1])/|v|.

Chaining this observation over all j gives

π(u+ v) = π(u) +
3

∑

i=1

∇iπ · v

∑

[tj ,tj+1]∈Ii
µ([tj , tj+1])

|v|
= π(u) +

3
∑

i=1

µi(u, v)∇
iπ · v.

�

B Faciality

B.1 Proof of Lemma 1

Suppose π is a facet and let π = 1
2
π1+

1
2
π2. We observe that S(π) ⊆ S(π1) and S(π) ⊆ S(π2).

Let s ∈ S(π). Then

1 =
∑

r∈Rk

π(r)sr =
1

2

∑

r∈Rk

π1(r)sr +
1

2

∑

r∈Rk

π2(r)sr ≥
1

2
+

1

2
= 1,

so equality must hold throughout and in particular,
∑

r∈Rk πi(r)sr = 1 for both i = 1, 2.
Therefore s ∈ S(πi) for both i = 1, 2. Since π is a facet, by definition this implies π = π1 =
π2.

B.2 Facet Theorem

The next lemma shows that a weaker condition than that in the definition of a facet is
enough to guarantee faciality.

Lemma 14 Let π be minimal valid function. Suppose that for every minimal valid func-
tion θ 6= π we have that S(π) 6⊆ S(θ). Then π is a facet.

Proof Consider any valid function θ (not necessarily minimal) such that S(π) ⊆ S(θ); we
show that θ = π.

Suppose to the contrary that there exists r1 ∈ R
k such that π(r1) 6= θ(r1). We claim

that actually there is r2 such π(r2) > θ(r2). To see this, first notice that the symmetry
condition of π (via Theorem 1) guarantees that π(r1)+π(−f−r1) = 1. Moreover, it is clear
that the solution s̄ given by s̄r1 = s̄−f−r1 = 1 and s̄r = 0 otherwise is feasible; together,
these observations imply that s̄ ∈ S(π). Since S(π) ⊆ S(θ), we have that s̄ ∈ S(θ) and hence

θ(r1) + θ(−f − r1) =
∑

r∈Rk

θ(r)s̄r = 1 = π(r1) + π(−f − r1).
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Since π(r1) 6= θ(r1), it follows that either π(r1) > θ(r1) or π(−f − r1) > θ(−f − r1), and
the claim holds.

Now consider a minimal valid function θ∗ ≤ θ. Notice that S(θ) ⊆ S(θ∗): for s̄ ∈ S(θ),
using its validity we get 1 ≤

∑

r∈Rk θ∗(r)s̄r ≤
∑

r∈Rk θ(r)s̄r = 1, hence equality hold
throughout and s̄ ∈ S(θ∗). Since S(π) ⊆ S(θ), we get that S(π) ⊆ S(θ∗). However, π 6= θ∗,
since there is r2 such that π(r2) > θ(r2) ≥ θ∗(r2). This contradicts the assumptions on π,
which concludes the proof.

Proof of Theorem 5 By Lemma 14, all we need to show is that for every minimal valid
function θ, S(π) ⊆ S(θ) implies θ = π. We simply show that for every minimal valid function
θ, S(π) ⊆ S(θ) implies E(π) ⊆ E(θ), and the result then follows from the assumption on π.

So let θ be a minimal valid function with S(π) ⊆ S(θ). Consider any (r1, r2) ∈ E(π),
namely such that π(r1) + π(r2) = π(r1 + r2). Notice that the solution s̄ given by s̄r1 =
s̄r2 = s̄−f−r1−r2 = 1 and s̄r = 0 is feasible. Moreover, using symmetry condition of π we
get that s̄ ∈ S(π). Indeed,

∑

r∈Rk

π(r)s̄r = π(r1) + π(r2) + π(−f − (r1 + r2)) = π(r1 + r2) + π(−f − (r1 + r2)) = 1.

Since S(π) ⊆ S(θ), the solution s̄ also belongs to S(θ), and now the symmetry condition of
θ gives

1 =
∑

r∈Rk

θ(r)s̄r = θ(r1) + θ(r2) + θ(−f − r1 − r2) = θ(r1) + θ(r2) + (1− θ(r1 + r2)).

Thus, θ(r1) + θ(r2) = θ(r1 + r2) and (r1, r2) ∈ E(θ). This concludes the proof.

C Technical Lemmas

C.1 Linear algebra

Lemma 15 Consider two linear independent vectors d1, d2 ∈ R
2 and two vectors u, v ∈ R

2.
If d1 · u = d1 · v and d2 · u = d2 · v, then u = v

Proof It suffices to prove that t
.
= u− v equals 0. The vectors d1, d2 form a basis and hence

t = α1d1+α2d2 for some α1, α2 ∈ R. Expanding the first appearance of t and using linearity
we get t · t = α1d1 · t+ α2d2 · t = 0, which implies that t = 0.

Lemma 16 Consider vectors d1, d2, d3 ∈ R
2 such that no two are linearly dependent. Then

there are α, β 6= 0 such that −d3 = αd1 + βd2.

Proof Since d1 and d2 are linearly independent there are α, β such that −d3 = αd1 + βd2.
Since d3 is linearly independent of d1 and d2 we get that α, β 6= 0.

Lemma 17 Consider a matrix [M |b] with the sign pattern

M =















1 0 −1 0 0 0 0
0 0 0 1 0 −1 0
−1 −1 0 0 1 1 0
⊕ 0 ⊕ 0 ⊕ 0 1
0 ⊕ 0 ⊕ 0 ⊕ 1
⊖ ⊖ ⊖ ⊖ ⊖ ⊖ 1















where ⊕/⊖ denotes that the entry is non-negative/non-positive. If M has no zero rows then
[M |b] has full row rank.
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Proof Assume that M has no zero rows. Pivoting [M |b] on entries (1, 3) and (2, 4) we obtain
that [M |b] is of full row rank iff the matrix [M ′|b′] is of full row rank, and the latter has the
following sign pattern:

[M ′|b′] =









−1 −1 1 1 0
⊕ 0 ⊕ 0 1
0 ⊕ 0 ⊕ 1
⊖ ⊖ ⊖ ⊖ 1









.

Also notice that M ′ has no zero rows.
Let m′

i denote the ith row of M ′. By means of contradiction, suppose that there are
λi’s not all zero such that

∑

i λi[m
′
i|b

′
i] = 0. We consider a few different cases.

First, assume that λ1 6= 0; then we can assume without loss of generality that λ1 > 0. If
λ4 ≥ 0, the first and the second column give that λ2 > 0 and λ3 > 0; however, from the last
column we get

∑

i λib
′
i > 0, raising a contradiction. If λ4 < 0 then from the third and forth

column we get λ2 < 0 and λ3 < 0, which gives
∑

i λib
′
i < 0 and again raises a contradiction.

Finally, suppose that λ1 = 0. We may assume λ4 ≥ 0 without loss of generality. Since
M ′ has no zero rows, we can infer that λ2 ≥ 0 and λ3 ≥ 0. But then from the last column
we obtain that λ1 = λ2 = λ3 = λ4 = 0, which contradicts our hypothesis. This concludes
the proof.

Lemma 18 Consider a locally finite tiling P of a path-connected region R ⊆ R
2. Assume

that θ : R → R is such that θ|P (x) = ∇ · x + βP for each P ∈ P, where ∇ is independent
of P . Then θ is a function in R of the form θ(x) = ∇ · x+ β.

Proof Consider P0 ∈ P and let R0 =
⋃

P∈P:βP=βP0

P . We claim that R = R0, which

gives the desired result. By means of contradiction suppose not and consider x ∈ R0 and
y ∈ R \ R0. Since R is path-connected, consider a path Π from x to y in R. Since Π is
compact and P locally finite, there is a finite number of polygons in P intersecting Π.
Let S0 =

⋃

P∈P:βP=βP0
,P∩Π 6=∅ P and S1 =

⋃

P∈P:βP 6=βP0
,P∩Π 6=∅ P . Notice that both

S0 and S1 are closed, since they are finite unions of closed sets. Since S0 and S1 cover Π,
x ∈ S0 and y ∈ S1, it is easy to see that there is a point z in Π which belongs to both
S0 and S1. However, this means that z belongs to a polygon P with βP = βP0

, and hence
θ(z) = θ|P (z) = ∇· z+βP0

. Similarly, z belongs to a polygon P ′ with βP ′ 6= βP0
and hence

θ(z) = ∇ · βP ′ 6= θ(z), which is a contradiction.

C.2 Approximation Theory

Lemma 19 Consider real numbers d1, d2, . . . , dn. Then for all k, ℓ > 0 there is λ > ℓ and
integers w1, w2, . . . , wn such that |wi − λdi| < 1/k for i = 1, 2, . . . , n.

Proof If all the di’s are rational then this is clearly true: take λ as a large enough multiple
of ∆, where ∆ is the product of the denominators of the di’s (say, in its lowest terms) and
let wi = λdi. So suppose without loss of generality that d1 is not rational. From Dirichlet’s
theorem for simultaneous approximation [13], we have a sequence {λm} > 0 and sequences
{wi

m} ∈ Z for i = 1, . . . , n such that limm→∞ |wi
m − λmdi| = 0 for all i. Since d1 is not

rational, {w1
m} takes infinitely many distinct values, which implies that there is m such that

|wi
m − λmdi| < 1/k for all i and |w1

m| > ℓ|d| + 1/k. To see that λm > ℓ we employ the
inequalities

ℓ|d1|+
1

k
< |w1

m| ≤ |w1
m − λmd1|+ |λmd1| <

1

k
+ λm|d1|,

and the result follows by rearranging the first and last terms.

Lemma 20 Consider real numbers f1, f2, . . . , fn and d1, d2, . . . , dn. Then for all k > 0,

there is λ > k and integers w1, w2, . . . , wn such that |wi−fi
λ

− di| < 1/k for i = 1, 2, . . . , n.
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Proof Take ℓ > max{k, 2, 2kmaxi |fi|} and let λ and {wi} be as in the previous lemma. We
have that for all i

∣

∣

∣

∣

wi − fi

λ
− di

∣

∣

∣

∣

=
|wi − fi − λdi|

λ
≤

|wi − λdi|

λ
+

|fi|

λ
<

1

kλ
+

ℓ

2kλ
.

Since λ ≥ ℓ > 2 , we have 1
kλ

+ ℓ
2kλ

< 1
k

and the result follows.

Lemma 21 Let A be an n × m matrix with full row rank. Then there exists ǫ > 0 such
that every n×m matrix A′ satisfying |A−A′|max < ǫ is of full row rank.

Proof Consider an n × n nonsingular submatrix B of A, and let B′ be the corresponding
submatrix of A′. The determinant det(B) is a continuous function of the entries of A. Since
det(B) 6= 0, we also have det(B′) 6= 0 for a small enough perturbation A′ of A.


